-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree_trickle.py
66 lines (57 loc) · 1.95 KB
/
tree_trickle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# SHIV's
# takes in a pandas dataframe with heirachal structure and spits out a tree
import pandas as pd
class cool_tree:
def __init__(self, name, obj):
self.name = name
self.obj = obj
self.children = []
def add_child(self, child):
assert(type(child) == type(self)), "Child must be of type 'cool tree'"
self.children.append(child)
def descendants(self):
kids = []
key = {}
if not self.children:
return {self.name: None}
for child in self.children:
kids.append(child.descendants())
key[self.name] = kids
return key
def isleaf(self):
if not self.children: return True
else: return False
def leaves(self):
if self.isleaf():
return self.obj
leafs = []
for L in self.children:
mid_leaf = L.leaves()
if type(mid_leaf) == float: leafs.append(mid_leaf)
else: leafs.extend(L.leaves())
return leafs
def pandas_2_tree(root, frame, cost):
top_level = frame.columns.tolist()[0]
unique_levels = frame[top_level].unique().tolist()
cost_red = cost/len(unique_levels)
for lev in unique_levels:
curr_lev = cool_tree(lev, cost_red)
idxs = frame.index
temp = frame[frame[top_level] == lev].drop(columns=[top_level])
if not temp.empty:
root.add_child(pandas_2_tree(curr_lev, temp, cost_red))
else:
root.add_child(curr_lev)
return root
#tests
def test():
data = [[1, 2, 3 ,5, 6, 7],
[1, 3, 2, 1, 3, 9],
[1, 3, 4, 4, 5, 6]]
cols = [chr(i+65) for i in data[0] ]
df = pd.DataFrame(data, columns=cols)
# this example demonstrates cost trickle down mechanism
root = pandas_2_tree(cool_tree('root', 57), df, 57)
print(root.descendants())
# this sum will be equal to the cost that was passed at the root
print(sum(root.leaves()))