-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathtest_keras_api.py
176 lines (142 loc) · 5.54 KB
/
test_keras_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
import pytest
import tensorflow as tf
import tf_explain
INPUT_SHAPE = (28, 28, 1)
def functional_api_model(num_classes):
img_input = tf.keras.Input(INPUT_SHAPE)
x = tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation="relu")(
img_input
)
x = tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation="relu")(x)
x = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(x)
x = tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation="relu")(x)
x = tf.keras.layers.Conv2D(
filters=64, kernel_size=(3, 3), activation="relu", name="grad_cam_target"
)(x)
x = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(64, activation="relu")(x)
x = tf.keras.layers.Dense(num_classes, activation="softmax")(x)
model = tf.keras.Model(img_input, x)
model.compile(
optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
)
return model
def sequential_api_model(num_classes):
model = tf.keras.models.Sequential(
[
tf.keras.layers.Conv2D(
filters=32,
kernel_size=(3, 3),
activation="relu",
input_shape=INPUT_SHAPE,
),
tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation="relu"),
tf.keras.layers.MaxPool2D(pool_size=(2, 2)),
tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation="relu"),
tf.keras.layers.Conv2D(
filters=64,
kernel_size=(3, 3),
activation="relu",
name="grad_cam_target",
),
tf.keras.layers.MaxPool2D(pool_size=(2, 2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(num_classes, activation="softmax"),
]
)
model.compile(
optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
)
return model
def subclassing_api_model(num_classes):
class SubclassedModel(tf.keras.models.Model):
def __init__(self, name="subclassed"):
super(SubclassedModel, self).__init__(name=name)
self.conv_1 = tf.keras.layers.Conv2D(
filters=32, kernel_size=(3, 3), activation="relu"
)
self.conv_2 = tf.keras.layers.Conv2D(
filters=64, kernel_size=(3, 3), activation="relu"
)
self.maxpool_1 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))
self.conv_3 = tf.keras.layers.Conv2D(
filters=32, kernel_size=(3, 3), activation="relu"
)
self.conv_4 = tf.keras.layers.Conv2D(
filters=64,
kernel_size=(3, 3),
activation="relu",
name="grad_cam_target",
)
self.maxpool_2 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))
self.flatten = tf.keras.layers.Flatten()
self.dense_1 = tf.keras.layers.Dense(64, activation="relu")
self.dense_2 = tf.keras.layers.Dense(num_classes, activation="softmax")
def build(self, input_shape):
super(SubclassedModel, self).build(input_shape)
def call(self, inputs, **kwargs):
x = inputs
for layer in [
self.conv_1,
self.conv_2,
self.maxpool_1,
self.conv_3,
self.conv_4,
self.maxpool_2,
self.flatten,
self.dense_1,
self.dense_2,
]:
x = layer(x)
return x
def compute_output_shape(self, input_shape):
shape = tf.TensorShape(input_shape).as_list()
return tf.TensorShape([shape[0], num_classes])
model = SubclassedModel()
model(
np.random.random([4, *INPUT_SHAPE]).astype("float32")
) # Sample call to build the model
model.compile(
optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
)
return model
# TODO: Activate subclassing API model (issue #55)
@pytest.mark.parametrize("model_builder", [functional_api_model, sequential_api_model])
def test_all_keras_api(
model_builder, mnist_dataset, validation_dataset, num_classes, output_dir
):
train_images, train_labels, test_images, test_labels = mnist_dataset
model = model_builder(num_classes)
model.summary()
validation_data, target_class = validation_dataset
# Instantiate callbacks
callbacks = [
tf_explain.callbacks.GradCAMCallback(
validation_data,
layer_name="grad_cam_target",
class_index=target_class,
output_dir=output_dir,
use_guided_grads=True,
),
tf_explain.callbacks.ActivationsVisualizationCallback(
validation_data, "grad_cam_target", output_dir=output_dir
),
tf_explain.callbacks.SmoothGradCallback(
validation_data,
class_index=target_class,
num_samples=15,
noise=1.0,
output_dir=output_dir,
),
tf_explain.callbacks.VanillaGradientsCallback(
validation_data, class_index=target_class, output_dir=output_dir
),
tf_explain.callbacks.GradientsInputsCallback(
validation_data, class_index=target_class, output_dir=output_dir
),
]
# Start training
model.fit(train_images, train_labels, epochs=3, callbacks=callbacks)