forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10_cnn_tfaugment2d.py
181 lines (145 loc) · 6.59 KB
/
cifar10_cnn_tfaugment2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
'''
#Train a simple deep CNN on the CIFAR10 small images dataset using augmentation.
Using TensorFlow internal augmentation APIs by replacing ImageGenerator with
an embedded AugmentLayer using LambdaLayer, which is faster on GPU.
** Benchmark of `ImageGenerator`(IG) vs `AugmentLayer`(AL) both using augmentation
2D:**
(backend = Tensorflow-GPU, Nvidia Tesla P100-SXM2)
Epoch no. | IG %Accuracy | IG Performance | AL %Accuracy | AL Performance
---------:|---------------:|---------------:|--------------:|--------------:
1 | 44.84 | 15 ms/step | 45.54 | 358 us/step
2 | 52.34 | 8 ms/step | 50.55 | 285 us/step
8 | 65.45 | 8 ms/step | 65.59 | 281 us/step
25 | 76.74 | 8 ms/step | 76.17 | 280 us/step
100 | 78.81 | 8 ms/step | 78.70 | 285 us/step
Settings: horizontal_flip = True
Epoch no. | IG %Accuracy | IG Performance | AL %Accuracy | AL Performance
---------:|---------------:|---------------:|--------------:|--------------:
1 | 43.46 | 15 ms/step | 42.21 | 334 us/step
2 | 48.95 | 11 ms/step | 48.06 | 282 us/step
8 | 63.59 | 11 ms/step | 61.35 | 290 us/step
25 | 72.25 | 12 ms/step | 71.08 | 287 us/step
100 | 76.35 | 11 ms/step | 74.62 | 286 us/step
Settings: rotation = 30.0
(Corner process and rotation precision by `ImageGenerator` and `AugmentLayer`
are slightly different.)
'''
from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, Lambda, MaxPooling2D
from keras import backend as K
import os
if K.backend() != 'tensorflow':
raise RuntimeError('This example can only run with the '
'TensorFlow backend, '
'because it requires TF-native augmentation APIs')
import tensorflow as tf
def augment_2d(inputs, rotation=0, horizontal_flip=False, vertical_flip=False):
"""Apply additive augmentation on 2D data.
# Arguments
rotation: A float, the degree range for rotation (0 <= rotation < 180),
e.g. 3 for random image rotation between (-3.0, 3.0).
horizontal_flip: A boolean, whether to allow random horizontal flip,
e.g. true for 50% possibility to flip image horizontally.
vertical_flip: A boolean, whether to allow random vertical flip,
e.g. true for 50% possibility to flip image vertically.
# Returns
input data after augmentation, whose shape is the same as its original.
"""
if inputs.dtype != tf.float32:
inputs = tf.image.convert_image_dtype(inputs, dtype=tf.float32)
with tf.name_scope('augmentation'):
shp = tf.shape(inputs)
batch_size, height, width = shp[0], shp[1], shp[2]
width = tf.cast(width, tf.float32)
height = tf.cast(height, tf.float32)
transforms = []
identity = tf.constant([1, 0, 0, 0, 1, 0, 0, 0], dtype=tf.float32)
if rotation > 0:
angle_rad = rotation * 3.141592653589793 / 180.0
angles = tf.random_uniform([batch_size], -angle_rad, angle_rad)
f = tf.contrib.image.angles_to_projective_transforms(angles,
height, width)
transforms.append(f)
if horizontal_flip:
coin = tf.less(tf.random_uniform([batch_size], 0, 1.0), 0.5)
shape = [-1., 0., width, 0., 1., 0., 0., 0.]
flip_transform = tf.convert_to_tensor(shape, dtype=tf.float32)
flip = tf.tile(tf.expand_dims(flip_transform, 0), [batch_size, 1])
noflip = tf.tile(tf.expand_dims(identity, 0), [batch_size, 1])
transforms.append(tf.where(coin, flip, noflip))
if vertical_flip:
coin = tf.less(tf.random_uniform([batch_size], 0, 1.0), 0.5)
shape = [1., 0., 0., 0., -1., height, 0., 0.]
flip_transform = tf.convert_to_tensor(shape, dtype=tf.float32)
flip = tf.tile(tf.expand_dims(flip_transform, 0), [batch_size, 1])
noflip = tf.tile(tf.expand_dims(identity, 0), [batch_size, 1])
transforms.append(tf.where(coin, flip, noflip))
if transforms:
f = tf.contrib.image.compose_transforms(*transforms)
inputs = tf.contrib.image.transform(inputs, f, interpolation='BILINEAR')
return inputs
batch_size = 32
num_classes = 10
epochs = 100
num_predictions = 20
save_dir = '/tmp/saved_models'
model_name = 'keras_cifar10_trained_model.h5'
# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Lambda(augment_2d,
input_shape=x_train.shape[1:],
arguments={'rotation': 8.0, 'horizontal_flip': True}))
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
# Save model and weights
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])