-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathexample_programming_challenges.py.yaml
40 lines (37 loc) · 1.61 KB
/
example_programming_challenges.py.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Example YAML configuration for basic prompt generation
system_prompt: |
You are an expert programming instructor who creates engaging coding challenges.
Each challenge should test specific programming concepts while remaining accessible and educational.
topic_tree:
args:
root_prompt: "Programming Challenges Across Different Difficulty Levels and Concepts"
model_system_prompt: "<system_prompt_placeholder>" # Will be replaced with system_prompt
tree_degree: 4 # Different programming concepts
tree_depth: 2 # Various difficulty levels
temperature: 0.7 # Higher temperature for creative problem scenarios
provider: "ollama" # LLM provider
model: "mistral-nemo:latest" # Model name
save_as: "programming_challenges_tree.jsonl"
data_engine:
args:
instructions: |
Generate programming challenges that include:
- Problem description
- Input/Output examples
- Constraints and edge cases
- Hint system (progressive hints)
- Solution approach discussion
- Time/Space complexity requirements
system_prompt: "<system_prompt_placeholder>" # Will be replaced with system_prompt
provider: "ollama" # LLM provider
model: "mistral-nemo:latest" # Model name
temperature: 0.8 # Higher temperature for creative problem scenarios
max_retries: 2 # Retry failed prompts up to 2 times
dataset:
creation:
num_steps: 5
batch_size: 1
provider: "ollama" # LLM provider
model: "mistral-nemo:latest" # Model name
sys_msg: true # Include system message in dataset (default: true)
save_as: "programming_challenges.jsonl"