-
Notifications
You must be signed in to change notification settings - Fork 161
/
Copy pathseq2sql.py
385 lines (332 loc) · 15.2 KB
/
seq2sql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from modules.word_embedding import WordEmbedding
from modules.aggregator_predict import AggPredictor
from modules.selection_predict import SelPredictor
from modules.seq2sql_condition_predict import Seq2SQLCondPredictor
# This is a re-implementation based on the following paper:
# Victor Zhong, Caiming Xiong, and Richard Socher. 2017.
# Seq2SQL: Generating Structured Queries from Natural Language using
# Reinforcement Learning. arXiv:1709.00103
class Seq2SQL(nn.Module):
def __init__(self, word_emb, N_word, N_h=100, N_depth=2,
gpu=False, trainable_emb=False):
super(Seq2SQL, self).__init__()
self.trainable_emb = trainable_emb
self.gpu = gpu
self.N_h = N_h
self.N_depth = N_depth
self.max_col_num = 45
self.max_tok_num = 200
self.SQL_TOK = ['<UNK>', '<END>', 'WHERE', 'AND',
'EQL', 'GT', 'LT', '<BEG>']
self.COND_OPS = ['EQL', 'GT', 'LT']
#Word embedding
if trainable_emb:
self.agg_embed_layer = WordEmbedding(word_emb, N_word, gpu,
self.SQL_TOK, our_model=False,
trainable=trainable_emb)
self.sel_embed_layer = WordEmbedding(word_emb, N_word, gpu,
self.SQL_TOK, our_model=False,
trainable=trainable_emb)
self.cond_embed_layer = WordEmbedding(word_emb, N_word, gpu,
self.SQL_TOK, our_model=False,
trainable=trainable_emb)
else:
self.embed_layer = WordEmbedding(word_emb, N_word, gpu,
self.SQL_TOK, our_model=False,
trainable=trainable_emb)
#Predict aggregator
self.agg_pred = AggPredictor(N_word, N_h, N_depth, use_ca=False)
#Predict selected column
self.sel_pred = SelPredictor(N_word, N_h, N_depth, self.max_tok_num,
use_ca=False)
#Predict number of cond
self.cond_pred = Seq2SQLCondPredictor(
N_word, N_h, N_depth, self.max_col_num, self.max_tok_num, gpu)
self.CE = nn.CrossEntropyLoss()
self.softmax = nn.Softmax()
self.log_softmax = nn.LogSoftmax()
self.bce_logit = nn.BCEWithLogitsLoss()
if gpu:
self.cuda()
def generate_gt_where_seq(self, q, col, query):
# data format
# <BEG> WHERE cond1_col cond1_op cond1
# AND cond2_col cond2_op cond2
# AND ... <END>
ret_seq = []
for cur_q, cur_col, cur_query in zip(q, col, query):
connect_col = [tok for col_tok in cur_col for tok in col_tok+[',']]
all_toks = self.SQL_TOK + connect_col + [None] + cur_q + [None]
cur_seq = [all_toks.index('<BEG>')]
if 'WHERE' in cur_query:
cur_where_query = cur_query[cur_query.index('WHERE'):]
cur_seq = cur_seq + map(lambda tok:all_toks.index(tok)
if tok in all_toks else 0, cur_where_query)
cur_seq.append(all_toks.index('<END>'))
ret_seq.append(cur_seq)
return ret_seq
def forward(self, q, col, col_num, pred_entry,
gt_where = None, gt_cond=None, reinforce=False, gt_sel=None):
B = len(q)
pred_agg, pred_sel, pred_cond = pred_entry
agg_score = None
sel_score = None
cond_score = None
if self.trainable_emb:
if pred_agg:
x_emb_var, x_len = self.agg_embed_layer.gen_x_batch(q, col)
batch = self.agg_embed_layer.gen_col_batch(col)
col_inp_var, col_name_len, col_len = batch
max_x_len = max(x_len)
agg_score = self.agg_pred(x_emb_var, x_len)
if pred_sel:
x_emb_var, x_len = self.sel_embed_layer.gen_x_batch(q, col)
batch = self.sel_embed_layer.gen_col_batch(col)
col_inp_var, col_name_len, col_len = batch
max_x_len = max(x_len)
sel_score = self.sel_pred(x_emb_var, x_len, col_inp_var,
col_name_len, col_len, col_num)
if pred_cond:
x_emb_var, x_len = self.cond_embed_layer.gen_x_batch(q, col)
batch = self.cond_embed_layer.gen_col_batch(col)
col_inp_var, col_name_len, col_len = batch
max_x_len = max(x_len)
cond_score = self.cond_pred(x_emb_var, x_len, col_inp_var,
col_name_len, col_len, col_num,
gt_where, gt_cond,
reinforce=reinforce)
else:
x_emb_var, x_len = self.embed_layer.gen_x_batch(q, col)
batch = self.embed_layer.gen_col_batch(col)
col_inp_var, col_name_len, col_len = batch
max_x_len = max(x_len)
if pred_agg:
agg_score = self.agg_pred(x_emb_var, x_len)
if pred_sel:
sel_score = self.sel_pred(x_emb_var, x_len, col_inp_var,
col_name_len, col_len, col_num)
if pred_cond:
cond_score = self.cond_pred(x_emb_var, x_len, col_inp_var,
col_name_len, col_len, col_num,
gt_where, gt_cond,
reinforce=reinforce)
return (agg_score, sel_score, cond_score)
def loss(self, score, truth_num, pred_entry, gt_where):
pred_agg, pred_sel, pred_cond = pred_entry
agg_score, sel_score, cond_score = score
loss = 0
if pred_agg:
agg_truth = map(lambda x:x[0], truth_num)
data = torch.from_numpy(np.array(agg_truth))
if self.gpu:
agg_truth_var = Variable(data.cuda())
else:
agg_truth_var = Variable(data)
loss += self.CE(agg_score, agg_truth_var)
if pred_sel:
sel_truth = map(lambda x:x[1], truth_num)
data = torch.from_numpy(np.array(sel_truth))
if self.gpu:
sel_truth_var = Variable(data).cuda()
else:
sel_truth_var = Variable(data)
loss += self.CE(sel_score, sel_truth_var)
if pred_cond:
for b in range(len(gt_where)):
if self.gpu:
cond_truth_var = Variable(
torch.from_numpy(np.array(gt_where[b][1:])).cuda())
else:
cond_truth_var = Variable(
torch.from_numpy(np.array(gt_where[b][1:])))
cond_pred_score = cond_score[b, :len(gt_where[b])-1]
loss += ( self.CE(
cond_pred_score, cond_truth_var) / len(gt_where) )
return loss
def reinforce_backward(self, score, rewards):
agg_score, sel_score, cond_score = score
cur_reward = rewards[:]
eof = self.SQL_TOK.index('<END>')
for t in range(len(cond_score[1])):
reward_inp = torch.FloatTensor(cur_reward).unsqueeze(1)
if self.gpu:
reward_inp = reward_inp.cuda()
cond_score[1][t].reinforce(reward_inp)
for b in range(len(rewards)):
if cond_score[1][t][b].data.cpu().numpy()[0] == eof:
cur_reward[b] = 0
torch.autograd.backward(cond_score[1], [None for _ in cond_score[1]])
return
def check_acc(self, vis_info, pred_queries, gt_queries, pred_entry):
def pretty_print(vis_data):
print 'question:', vis_data[0]
print 'headers: (%s)'%(' || '.join(vis_data[1]))
print 'query:', vis_data[2]
def gen_cond_str(conds, header):
if len(conds) == 0:
return 'None'
cond_str = []
for cond in conds:
cond_str.append(
header[cond[0]] + ' ' + self.COND_OPS[cond[1]] + \
' ' + unicode(cond[2]).lower())
return 'WHERE ' + ' AND '.join(cond_str)
pred_agg, pred_sel, pred_cond = pred_entry
B = len(gt_queries)
tot_err = agg_err = sel_err = cond_err = cond_num_err = \
cond_col_err = cond_op_err = cond_val_err = 0.0
agg_ops = ['None', 'MAX', 'MIN', 'COUNT', 'SUM', 'AVG']
for b, (pred_qry, gt_qry) in enumerate(zip(pred_queries, gt_queries)):
good = True
if pred_agg:
agg_pred = pred_qry['agg']
agg_gt = gt_qry['agg']
if agg_pred != agg_gt:
agg_err += 1
good = False
if pred_sel:
sel_pred = pred_qry['sel']
sel_gt = gt_qry['sel']
if sel_pred != sel_gt:
sel_err += 1
good = False
if pred_cond:
cond_pred = pred_qry['conds']
cond_gt = gt_qry['conds']
flag = True
if len(cond_pred) != len(cond_gt):
flag = False
cond_num_err += 1
if flag and set(
x[0] for x in cond_pred) != set(x[0] for x in cond_gt):
flag = False
cond_col_err += 1
for idx in range(len(cond_pred)):
if not flag:
break
gt_idx = tuple(x[0] for x in cond_gt).index(cond_pred[idx][0])
if flag and cond_gt[gt_idx][1] != cond_pred[idx][1]:
flag = False
cond_op_err += 1
for idx in range(len(cond_pred)):
if not flag:
break
gt_idx = tuple(x[0] for x in cond_gt).index(cond_pred[idx][0])
if flag and unicode(cond_gt[gt_idx][2]).lower() != \
unicode(cond_pred[idx][2]).lower():
flag = False
cond_val_err += 1
if not flag:
cond_err += 1
good = False
if not good:
tot_err += 1
return np.array((agg_err, sel_err, cond_err)), tot_err
def gen_query(self, score, q, col, raw_q, raw_col, pred_entry,
reinforce=False, verbose=False):
def merge_tokens(tok_list, raw_tok_str):
tok_str = raw_tok_str.lower()
alphabet = 'abcdefghijklmnopqrstuvwxyz0123456789$('
special = {'-LRB-':'(', '-RRB-':')', '-LSB-':'[', '-RSB-':']',
'``':'"', '\'\'':'"', '--':u'\u2013'}
ret = ''
double_quote_appear = 0
for raw_tok in tok_list:
if not raw_tok:
continue
tok = special.get(raw_tok, raw_tok)
if tok == '"':
double_quote_appear = 1 - double_quote_appear
if len(ret) == 0:
pass
elif len(ret) > 0 and ret + ' ' + tok in tok_str:
ret = ret + ' '
elif len(ret) > 0 and ret + tok in tok_str:
pass
elif tok == '"':
if double_quote_appear:
ret = ret + ' '
elif tok[0] not in alphabet:
pass
elif (ret[-1] not in ['(', '/', u'\u2013', '#', '$', '&']) and \
(ret[-1] != '"' or not double_quote_appear):
ret = ret + ' '
ret = ret + tok
return ret.strip()
pred_agg, pred_sel, pred_cond = pred_entry
agg_score, sel_score, cond_score = score
ret_queries = []
if pred_agg:
B = len(agg_score)
elif pred_sel:
B = len(sel_score)
elif pred_cond:
B = len(cond_score[0]) if reinforce else len(cond_score)
for b in range(B):
cur_query = {}
if pred_agg:
cur_query['agg'] = np.argmax(agg_score[b].data.cpu().numpy())
if pred_sel:
cur_query['sel'] = np.argmax(sel_score[b].data.cpu().numpy())
if pred_cond:
cur_query['conds'] = []
all_toks = self.SQL_TOK + \
[x for toks in col[b] for x in
toks+[',']] + [''] + q[b] + ['']
cond_toks = []
if reinforce:
for choices in cond_score[1]:
if choices[b].data.cpu().numpy()[0] < len(all_toks):
cond_val = all_toks[choices[b].data.cpu().numpy()[0]]
else:
cond_val = '<UNK>'
if cond_val == '<END>':
break
cond_toks.append(cond_val)
else:
for where_score in cond_score[b].data.cpu().numpy():
cond_tok = np.argmax(where_score)
cond_val = all_toks[cond_tok]
if cond_val == '<END>':
break
cond_toks.append(cond_val)
if verbose:
print cond_toks
if len(cond_toks) > 0:
cond_toks = cond_toks[1:]
st = 0
while st < len(cond_toks):
cur_cond = [None, None, None]
ed = len(cond_toks) if 'AND' not in cond_toks[st:] \
else cond_toks[st:].index('AND') + st
if 'EQL' in cond_toks[st:ed]:
op = cond_toks[st:ed].index('EQL') + st
cur_cond[1] = 0
elif 'GT' in cond_toks[st:ed]:
op = cond_toks[st:ed].index('GT') + st
cur_cond[1] = 1
elif 'LT' in cond_toks[st:ed]:
op = cond_toks[st:ed].index('LT') + st
cur_cond[1] = 2
else:
op = st
cur_cond[1] = 0
sel_col = cond_toks[st:op]
to_idx = [x.lower() for x in raw_col[b]]
pred_col = merge_tokens(sel_col, raw_q[b] + ' || ' + \
' || '.join(raw_col[b]))
if pred_col in to_idx:
cur_cond[0] = to_idx.index(pred_col)
else:
cur_cond[0] = 0
cur_cond[2] = merge_tokens(cond_toks[op+1:ed], raw_q[b])
cur_query['conds'].append(cur_cond)
st = ed + 1
ret_queries.append(cur_query)
return ret_queries