-
Notifications
You must be signed in to change notification settings - Fork 162
/
Copy pathutils.py
287 lines (250 loc) · 10.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import json
from lib.dbengine import DBEngine
import re
import numpy as np
#from nltk.tokenize import StanfordTokenizer
def load_data(sql_paths, table_paths, use_small=False):
if not isinstance(sql_paths, list):
sql_paths = (sql_paths, )
if not isinstance(table_paths, list):
table_paths = (table_paths, )
sql_data = []
table_data = {}
max_col_num = 0
for SQL_PATH in sql_paths:
print "Loading data from %s"%SQL_PATH
with open(SQL_PATH) as inf:
for idx, line in enumerate(inf):
if use_small and idx >= 1000:
break
sql = json.loads(line.strip())
sql_data.append(sql)
for TABLE_PATH in table_paths:
print "Loading data from %s"%TABLE_PATH
with open(TABLE_PATH) as inf:
for line in inf:
tab = json.loads(line.strip())
table_data[tab[u'id']] = tab
for sql in sql_data:
assert sql[u'table_id'] in table_data
return sql_data, table_data
def load_dataset(dataset_id, use_small=False):
if dataset_id == 0:
print "Loading from original dataset"
sql_data, table_data = load_data('data/train_tok.jsonl',
'data/train_tok.tables.jsonl', use_small=use_small)
val_sql_data, val_table_data = load_data('data/dev_tok.jsonl',
'data/dev_tok.tables.jsonl', use_small=use_small)
test_sql_data, test_table_data = load_data('data/test_tok.jsonl',
'data/test_tok.tables.jsonl', use_small=use_small)
TRAIN_DB = 'data/train.db'
DEV_DB = 'data/dev.db'
TEST_DB = 'data/test.db'
else:
print "Loading from re-split dataset"
sql_data, table_data = load_data('data_resplit/train.jsonl',
'data_resplit/tables.jsonl', use_small=use_small)
val_sql_data, val_table_data = load_data('data_resplit/dev.jsonl',
'data_resplit/tables.jsonl', use_small=use_small)
test_sql_data, test_table_data = load_data('data_resplit/test.jsonl',
'data_resplit/tables.jsonl', use_small=use_small)
TRAIN_DB = 'data_resplit/table.db'
DEV_DB = 'data_resplit/table.db'
TEST_DB = 'data_resplit/table.db'
return sql_data, table_data, val_sql_data, val_table_data,\
test_sql_data, test_table_data, TRAIN_DB, DEV_DB, TEST_DB
def best_model_name(args, for_load=False):
new_data = 'new' if args.dataset > 0 else 'old'
mode = 'seq2sql' if args.baseline else 'sqlnet'
if for_load:
use_emb = use_rl = ''
else:
use_emb = '_train_emb' if args.train_emb else ''
use_rl = 'rl_' if args.rl else ''
use_ca = '_ca' if args.ca else ''
agg_model_name = 'saved_model/%s_%s%s%s.agg_model'%(new_data,
mode, use_emb, use_ca)
sel_model_name = 'saved_model/%s_%s%s%s.sel_model'%(new_data,
mode, use_emb, use_ca)
cond_model_name = 'saved_model/%s_%s%s%s.cond_%smodel'%(new_data,
mode, use_emb, use_ca, use_rl)
if not for_load and args.train_emb:
agg_embed_name = 'saved_model/%s_%s%s%s.agg_embed'%(new_data,
mode, use_emb, use_ca)
sel_embed_name = 'saved_model/%s_%s%s%s.sel_embed'%(new_data,
mode, use_emb, use_ca)
cond_embed_name = 'saved_model/%s_%s%s%s.cond_embed'%(new_data,
mode, use_emb, use_ca)
return agg_model_name, sel_model_name, cond_model_name,\
agg_embed_name, sel_embed_name, cond_embed_name
else:
return agg_model_name, sel_model_name, cond_model_name
def to_batch_seq(sql_data, table_data, idxes, st, ed, ret_vis_data=False):
q_seq = []
col_seq = []
col_num = []
ans_seq = []
query_seq = []
gt_cond_seq = []
vis_seq = []
for i in range(st, ed):
sql = sql_data[idxes[i]]
q_seq.append(sql['question_tok'])
col_seq.append(table_data[sql['table_id']]['header_tok'])
col_num.append(len(table_data[sql['table_id']]['header']))
ans_seq.append((sql['sql']['agg'],
sql['sql']['sel'],
len(sql['sql']['conds']),
tuple(x[0] for x in sql['sql']['conds']),
tuple(x[1] for x in sql['sql']['conds'])))
query_seq.append(sql['query_tok'])
gt_cond_seq.append(sql['sql']['conds'])
vis_seq.append((sql['question'],
table_data[sql['table_id']]['header'], sql['query']))
if ret_vis_data:
return q_seq, col_seq, col_num, ans_seq, query_seq, gt_cond_seq, vis_seq
else:
return q_seq, col_seq, col_num, ans_seq, query_seq, gt_cond_seq
def to_batch_query(sql_data, idxes, st, ed):
query_gt = []
table_ids = []
for i in range(st, ed):
query_gt.append(sql_data[idxes[i]]['sql'])
table_ids.append(sql_data[idxes[i]]['table_id'])
return query_gt, table_ids
def epoch_train(model, optimizer, batch_size, sql_data, table_data, pred_entry):
model.train()
perm=np.random.permutation(len(sql_data))
cum_loss = 0.0
st = 0
while st < len(sql_data):
ed = st+batch_size if st+batch_size < len(perm) else len(perm)
q_seq, col_seq, col_num, ans_seq, query_seq, gt_cond_seq = \
to_batch_seq(sql_data, table_data, perm, st, ed)
gt_where_seq = model.generate_gt_where_seq(q_seq, col_seq, query_seq)
gt_sel_seq = [x[1] for x in ans_seq]
score = model.forward(q_seq, col_seq, col_num, pred_entry,
gt_where=gt_where_seq, gt_cond=gt_cond_seq, gt_sel=gt_sel_seq)
loss = model.loss(score, ans_seq, pred_entry, gt_where_seq)
cum_loss += loss.data.cpu().numpy()[0]*(ed - st)
optimizer.zero_grad()
loss.backward()
optimizer.step()
st = ed
return cum_loss / len(sql_data)
def epoch_exec_acc(model, batch_size, sql_data, table_data, db_path):
engine = DBEngine(db_path)
model.eval()
perm = list(range(len(sql_data)))
tot_acc_num = 0.0
acc_of_log = 0.0
st = 0
while st < len(sql_data):
ed = st+batch_size if st+batch_size < len(perm) else len(perm)
q_seq, col_seq, col_num, ans_seq, query_seq, gt_cond_seq, raw_data = \
to_batch_seq(sql_data, table_data, perm, st, ed, ret_vis_data=True)
raw_q_seq = [x[0] for x in raw_data]
raw_col_seq = [x[1] for x in raw_data]
gt_where_seq = model.generate_gt_where_seq(q_seq, col_seq, query_seq)
query_gt, table_ids = to_batch_query(sql_data, perm, st, ed)
gt_sel_seq = [x[1] for x in ans_seq]
score = model.forward(q_seq, col_seq, col_num,
(True, True, True), gt_sel=gt_sel_seq)
pred_queries = model.gen_query(score, q_seq, col_seq,
raw_q_seq, raw_col_seq, (True, True, True))
for idx, (sql_gt, sql_pred, tid) in enumerate(
zip(query_gt, pred_queries, table_ids)):
ret_gt = engine.execute(tid,
sql_gt['sel'], sql_gt['agg'], sql_gt['conds'])
try:
ret_pred = engine.execute(tid,
sql_pred['sel'], sql_pred['agg'], sql_pred['conds'])
except:
ret_pred = None
tot_acc_num += (ret_gt == ret_pred)
st = ed
return tot_acc_num / len(sql_data)
def epoch_acc(model, batch_size, sql_data, table_data, pred_entry):
model.eval()
perm = list(range(len(sql_data)))
st = 0
one_acc_num = 0.0
tot_acc_num = 0.0
while st < len(sql_data):
ed = st+batch_size if st+batch_size < len(perm) else len(perm)
q_seq, col_seq, col_num, ans_seq, query_seq, gt_cond_seq, raw_data = to_batch_seq(sql_data, table_data, perm, st, ed, ret_vis_data=True)
raw_q_seq = [x[0] for x in raw_data]
raw_col_seq = [x[1] for x in raw_data]
query_gt, table_ids = to_batch_query(sql_data, perm, st, ed)
gt_sel_seq = [x[1] for x in ans_seq]
score = model.forward(q_seq, col_seq, col_num,
pred_entry, gt_sel = gt_sel_seq)
pred_queries = model.gen_query(score, q_seq, col_seq,
raw_q_seq, raw_col_seq, pred_entry)
one_err, tot_err = model.check_acc(raw_data,
pred_queries, query_gt, pred_entry)
one_acc_num += (ed-st-one_err)
tot_acc_num += (ed-st-tot_err)
st = ed
return tot_acc_num / len(sql_data), one_acc_num / len(sql_data)
def epoch_reinforce_train(model, optimizer, batch_size, sql_data, table_data, db_path):
engine = DBEngine(db_path)
model.train()
perm = np.random.permutation(len(sql_data))
cum_reward = 0.0
st = 0
while st < len(sql_data):
ed = st+batch_size if st+batch_size < len(perm) else len(perm)
q_seq, col_seq, col_num, ans_seq, query_seq, gt_cond_seq, raw_data =\
to_batch_seq(sql_data, table_data, perm, st, ed, ret_vis_data=True)
gt_where_seq = model.generate_gt_where_seq(q_seq, col_seq, query_seq)
raw_q_seq = [x[0] for x in raw_data]
raw_col_seq = [x[1] for x in raw_data]
query_gt, table_ids = to_batch_query(sql_data, perm, st, ed)
gt_sel_seq = [x[1] for x in ans_seq]
score = model.forward(q_seq, col_seq, col_num, (True, True, True),
reinforce=True, gt_sel=gt_sel_seq)
pred_queries = model.gen_query(score, q_seq, col_seq, raw_q_seq,
raw_col_seq, (True, True, True), reinforce=True)
query_gt, table_ids = to_batch_query(sql_data, perm, st, ed)
rewards = []
for idx, (sql_gt, sql_pred, tid) in enumerate(
zip(query_gt, pred_queries, table_ids)):
ret_gt = engine.execute(tid,
sql_gt['sel'], sql_gt['agg'], sql_gt['conds'])
try:
ret_pred = engine.execute(tid,
sql_pred['sel'], sql_pred['agg'], sql_pred['conds'])
except:
ret_pred = None
if ret_pred is None:
rewards.append(-2)
elif ret_pred != ret_gt:
rewards.append(-1)
else:
rewards.append(1)
cum_reward += (sum(rewards))
optimizer.zero_grad()
model.reinforce_backward(score, rewards)
optimizer.step()
st = ed
return cum_reward / len(sql_data)
def load_word_emb(file_name, load_used=False, use_small=False):
if not load_used:
print ('Loading word embedding from %s'%file_name)
ret = {}
with open(file_name) as inf:
for idx, line in enumerate(inf):
if (use_small and idx >= 5000):
break
info = line.strip().split(' ')
if info[0].lower() not in ret:
ret[info[0]] = np.array(map(lambda x:float(x), info[1:]))
return ret
else:
print ('Load used word embedding')
with open('glove/word2idx.json') as inf:
w2i = json.load(inf)
with open('glove/usedwordemb.npy') as inf:
word_emb_val = np.load(inf)
return w2i, word_emb_val