jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Traces of most types can be optionally associated with a single legend item in the legend. Whether or not a given trace appears in the legend is controlled via the showlegend
attribute. Traces which are their own subplots (see above) do not support this, with the exception of traces of type pie
and funnelarea
for which every distinct color represented in the trace gets a separate legend item. Users may show or hide traces by clicking or double-clicking on their associated legend item. Traces that support legend items also support the legendgroup
attribute, and all traces with the same legend group are treated the same way during click/double-click interactions.
The fact that legend items are linked to traces means that when using discrete color, a figure must have one trace per color in order to get a meaningful legend. Plotly Express has robust support for discrete color to make this easy.
Traces which support continuous color can also be associated with color axes in the layout via the coloraxis
attribute. Multiple traces can be linked to the same color axis. Color axes have a legend-like component called color bars. Alternatively, color axes can be configured within the trace itself.
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.
Plotly Express functions will create one trace per animation frame for each unique combination of data values mapped to discrete color, symbol, line-dash, facet-row and/or facet-column. Traces' legendgroup
and showlegend
attributed are set such that only one legend item appears per unique combination of discrete color, symbol and/or line-dash. The legend title is automatically set, and can be overrided with the labels
keyword argument:
import plotly.express as px
df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", color="sex", symbol="smoker", facet_col="time",
labels={"sex": "Gender", "smoker": "Smokes"})
fig.show()
By default, Plotly Express lays out legend items in the order in which values appear in the underlying data. Every Plotly Express function also includes a category_orders
keyword argument which can be used to control the order in which categorical axes are drawn, but beyond that can also control the order in which legend items appear, and the order in which facets are laid out.
import plotly.express as px
df = px.data.tips()
fig = px.bar(df, x="day", y="total_bill", color="smoker", barmode="group", facet_col="sex",
category_orders={"day": ["Thur", "Fri", "Sat", "Sun"],
"smoker": ["Yes", "No"],
"sex": ["Male", "Female"]})
fig.show()
When using stacked bars, the bars are stacked from the bottom in the same order as they appear in the legend, so it can make sense to set layout.legend.traceorder
to "reversed"
to get the legend and stacks to match:
import plotly.express as px
df = px.data.tips()
fig = px.bar(df, x="day", y="total_bill", color="smoker", barmode="stack", facet_col="sex",
category_orders={"day": ["Thur", "Fri", "Sat", "Sun"],
"smoker": ["Yes", "No"],
"sex": ["Male", "Female"]})
fig.update_layout(legend_traceorder="reversed")
fig.show()
When using plotly.graph_objects
rather than Plotly Express, legend items will appear in the order that traces appear in the data
:
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Bar(name="first", x=["a", "b"], y=[1,2]))
fig.add_trace(go.Bar(name="second", x=["a", "b"], y=[2,1]))
fig.add_trace(go.Bar(name="third", x=["a", "b"], y=[1,2]))
fig.add_trace(go.Bar(name="fourth", x=["a", "b"], y=[2,1]))
fig.show()
By default the legend is displayed on Plotly charts with multiple traces, and this can be explicitly set with the layout.showlegend
attribute:
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="sex", y="total_bill", color="time",
title="Total Bill by Sex, Colored by Time")
fig.update_layout(showlegend=False)
fig.show()
Legends have an anchor point, which can be set to a point within the legend using layout.legend.xanchor
and layout.legend.yanchor
. The coordinate of the anchor can be positioned with layout.legend.x
and layout.legend.y
in paper coordinates. Note that the plot margins will grow so as to accomodate the legend. The legend may also be placed within the plotting area.
import plotly.express as px
df = px.data.gapminder().query("year==2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", color="continent",
size="pop", size_max=45, log_x=True)
fig.update_layout(legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
))
fig.show()
The layout.legend.orientation
attribute can be set to "h"
for a horizontal legend. Here we also position it above the plotting area.
import plotly.express as px
df = px.data.gapminder().query("year==2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", color="continent",
size="pop", size_max=45, log_x=True)
fig.update_layout(legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
))
fig.show()
Legends support many styling options.
import plotly.express as px
df = px.data.gapminder().query("year==2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", color="continent",
size="pop", size_max=45, log_x=True)
fig.update_layout(
legend=dict(
x=0,
y=1,
traceorder="reversed",
title_font_family="Times New Roman",
font=dict(
family="Courier",
size=12,
color="black"
),
bgcolor="LightSteelBlue",
bordercolor="Black",
borderwidth=2
)
)
fig.show()
When creating figures using graph objects without using Plotly Express, legends must be manually configured using some of the options below.
Legend items appear per trace, and the legend item name is taken from the trace's name
attribute.
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(
x=[1, 2, 3, 4, 5],
y=[1, 2, 3, 4, 5],
name="Positive"
))
fig.add_trace(go.Scatter(
x=[1, 2, 3, 4, 5],
y=[5, 4, 3, 2, 1],
name="Negative"
))
fig.show()
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(
x=[1, 2, 3, 4, 5],
y=[1, 2, 3, 4, 5],
name="Increasing"
))
fig.add_trace(go.Scatter(
x=[1, 2, 3, 4, 5],
y=[5, 4, 3, 2, 1],
name="Decreasing"
))
fig.update_layout(legend_title_text='Trend')
fig.show()
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(
x=[1, 2, 3, 4, 5],
y=[1, 2, 3, 4, 5],
showlegend=False
))
fig.add_trace(go.Scatter(
x=[1, 2, 3, 4, 5],
y=[5, 4, 3, 2, 1],
))
fig.update_layout(showlegend=True)
fig.show()
Traces have a visible
attribute. If set to legendonly
, the trace is hidden from the graph implicitly. Click on the name in the legend to display the hidden trace.
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(
x=[1, 2, 3, 4, 5],
y=[1, 2, 3, 4, 5],
))
fig.add_trace(go.Scatter(
x=[1, 2, 3, 4, 5],
y=[5, 4, 3, 2, 1],
visible='legendonly'
))
fig.show()
In this example itemsizing attribute determines the legend items symbols remain constant, regardless of how tiny/huge the bubbles would be in the graph.
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(
x=[1, 2, 3, 4, 5],
y=[1, 2, 3, 4, 5],
mode='markers',
marker={'size':10}
))
fig.add_trace(go.Scatter(
x=[1, 2, 3, 4, 5],
y=[5, 4, 3, 2, 1],
mode='markers',
marker={'size':100}
))
fig.update_layout(legend= {'itemsizing': 'constant'})
fig.show()
Grouping legend items together by setting the legendgroup
attribute of traces causes their legend entries to be next to each other, and clicking on any legend entry in the group will show or hide the whole group.
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(
x=[1, 2, 3],
y=[2, 1, 3],
legendgroup="group", # this can be any string, not just "group"
name="first legend group",
mode="markers",
marker=dict(color="Crimson", size=10)
))
fig.add_trace(go.Scatter(
x=[1, 2, 3],
y=[2, 2, 2],
legendgroup="group",
name="first legend group - average",
mode="lines",
line=dict(color="Crimson")
))
fig.add_trace(go.Scatter(
x=[1, 2, 3],
y=[4, 9, 2],
legendgroup="group2",
name="second legend group",
mode="markers",
marker=dict(color="MediumPurple", size=10)
))
fig.add_trace(go.Scatter(
x=[1, 2, 3],
y=[5, 5, 5],
legendgroup="group2",
name="second legend group - average",
mode="lines",
line=dict(color="MediumPurple")
))
fig.update_layout(title="Try Clicking on the Legend Items!")
fig.show()
You can also hide entries in grouped legends, preserving the grouped show/hide behaviour. This is what Plotly Express does with its legends.
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(
x=[1, 2, 3],
y=[2, 1, 3],
legendgroup="group", # this can be any string, not just "group"
name="first legend group",
mode="markers",
marker=dict(color="Crimson", size=10)
))
fig.add_trace(go.Scatter(
x=[1, 2, 3],
y=[2, 2, 2],
legendgroup="group",
name="first legend group - average",
mode="lines",
line=dict(color="Crimson"),
showlegend=False,
))
fig.add_trace(go.Scatter(
x=[1, 2, 3],
y=[4, 9, 2],
legendgroup="group2",
name="second legend group",
mode="markers",
marker=dict(color="MediumPurple", size=10)
))
fig.add_trace(go.Scatter(
x=[1, 2, 3],
y=[5, 5, 5],
legendgroup="group2",
name="second legend group - average",
mode="lines",
line=dict(color="MediumPurple"),
showlegend=False
))
fig.update_layout(title="Try Clicking on the Legend Items!")
fig.show()
Traces corresponding to 2D fields (e.g. go.Heatmap
, go.Histogram2d
) or 3D fields (e.g. go.Isosurface
, go.Volume
, go.Cone
) can also appear in the legend. They come with legend icons corresponding to each trace type, which are colored using the same colorscale as the trace.
The example below explores a vector field using several traces. Note that you can click on legend items to hide or to select (with a double click) a specific trace. This will make the exploration of your data easier!
import numpy as np
import plotly.graph_objects as go
# Define vector and scalar fields
x, y, z = np.mgrid[0:1:8j, 0:1:8j, 0:1:8j]
u = np.sin(np.pi*x) * np.cos(np.pi*z)
v = -2*np.sin(np.pi*y) * np.cos(2*np.pi*z)
w = np.cos(np.pi*x)*np.sin(np.pi*z) + np.cos(np.pi*y)*np.sin(2*np.pi*z)
magnitude = np.sqrt(u**2 + v**2 + w**2)
mask1 = np.logical_and(y>=.4, y<=.6)
mask2 = y>.6
fig = go.Figure(go.Isosurface(
x=x.ravel(), y=y.ravel(), z=z.ravel(),
value=magnitude.ravel(),
isomin=1.9, isomax=1.9,
colorscale="BuGn",
name='isosurface'))
fig.add_trace(go.Cone(x=x[mask1], y=y[mask1], z=z[mask1],
u=u[mask1], v=v[mask1], w=w[mask1],
colorscale="Blues",
name='cones'
))
fig.add_trace(go.Streamtube(
x=x[mask2], y=y[mask2], z=z[mask2],
u=u[mask2], v=v[mask2], w=w[mask2],
colorscale="Reds",
name='streamtubes'
))
# Update all traces together
fig.update_traces(showlegend=True, showscale=False)
fig.update_layout(width=600, title_text='Exploration of a vector field using several traces')
fig.show()
See https://plotly.com/python/reference/layout/#layout-legend for more information!