-
Notifications
You must be signed in to change notification settings - Fork 192
/
Copy pathut_cases.py
33 lines (27 loc) · 1.69 KB
/
ut_cases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from vectordb_bench.backend.cases import (
PerformanceCase,
CaseType,
)
from vectordb_bench.backend.datase import Dataset, DatasetManager
class Performance100K99p(PerformanceCase):
case_id: CaseType = 100
filter_rate: float | int | None = 0.99
dataset: DatasetManager = Dataset.COHERE.manager(100_000)
name: str = "Filtering Search Performance Test (100K Dataset, 768 Dim, Filter 99%)"
description: str = """This case tests the search performance of a vector database with a small dataset (<b>Cohere 100K vectors</b>, 768 dimensions) under a high filtering rate (<b>99% vectors</b>), at varying parallel levels.
Results will show index building time, recall, and maximum QPS."""
class Performance100K1p(PerformanceCase):
case_id: CaseType = 100
filter_rate: float | int | None = 0.01
dataset: DatasetManager = Dataset.COHERE.manager(100_000)
name: str = "Filtering Search Performance Test (100K Dataset, 768 Dim, Filter 1%)"
description: str = (
"""This case tests the search performance of a vector database with a small dataset (<b>Cohere 100K vectors</b>, 768 dimensions) under a low filtering rate (<b>1% vectors</b>), at varying parallel levels.
Results will show index building time, recall, and maximum QPS.""",
)
class Performance100K(PerformanceCase):
case_id: CaseType = 100
dataset: DatasetManager = Dataset.COHERE.manager(100_000)
name: str = "Search Performance Test (100K Dataset, 768 Dim)"
description: str = """This case tests the search performance of a vector database with a small dataset (<b>Cohere 100K vectors</b>, 768 dimensions) at varying parallel levels.
Results will show index building time, recall, and maximum QPS."""