Skip to content

rafaelpierre/mcp-lightning-lesson

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Your First Agentic AI App with MCP

Maven Lightning Lesson

A Python project demonstrating the use of OpenAI GPT models and MCP (Model Context Protocol) agents to fetch and process real-world data.

Overview

This project provides an example of using a custom agent to retrieve weather forecasts for Hintertux, Austria, by fetching data from the meteoblue.com website. It leverages the openai-agents library and its capabilities to run and expose MCP Servers.

Features

  • Custom agent implementation using OpenAI GPT models
  • Integration with MCP server for data fetching
  • Example function tool (get_time) for current time retrieval
  • Returns structured JSON output

Requirements

  • Python 3.13+
  • OpenAI API key

Installation

  1. Clone the repository:
    git clone ...
    cd mcp-lightning-lesson
  2. Create a venv using uv:
    uv venv
  3. Copy the example environment file and add your OpenAI API key:
    cp .env.example .env
    # Edit .env and set your OPENAI_API_KEY

Usage

Run the main script:

uv run python main.py

The agent will:

  • Fetch the weather forecast for Hintertux, Austria
  • Get the current time
  • Return the results as a JSON payload

Project Structure

  • main.py – Main application logic
  • pyproject.toml – Project dependencies and metadata
  • .env.example – Example environment variable file

Dependencies

  • openai-agents >= 0.0.15
  • python-dotenv >= 1.1.0

Frontend

Coming soon!