[NeurIPS 2020] Code for "An Efficient Adversarial Attack for Tree Ensembles"
-
Updated
Jun 6, 2021 - C++
[NeurIPS 2020] Code for "An Efficient Adversarial Attack for Tree Ensembles"
An interpretability method for XGBoost and fault detection models
Solução end-to-end para predição de inadimplência, desde feature engineering até API REST em produção. Redução de 25% em perdas financeiras com modelos explicáveis (SHAP/XGBoost).
Add a description, image, and links to the xgboost-models topic page so that developers can more easily learn about it.
To associate your repository with the xgboost-models topic, visit your repo's landing page and select "manage topics."