-
-
Notifications
You must be signed in to change notification settings - Fork 9.5k
Description
Your current environment
The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.26.3
Libc version: glibc-2.31
Python version: 3.10.15 (main, Dec 2 2024, 18:21:11) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-1035-aws-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A10G
GPU 1: NVIDIA A10G
GPU 2: NVIDIA A10G
GPU 3: NVIDIA A10G
Nvidia driver version: 535.183.01
cuDNN version: Probably one of the following:
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.5
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.5
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 48
On-line CPU(s) list: 0-47
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
NUMA node(s): 1
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7R32
Stepping: 0
CPU MHz: 2799.998
BogoMIPS: 5599.99
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 768 KiB
L1i cache: 768 KiB
L2 cache: 12 MiB
L3 cache: 96 MiB
NUMA node0 CPU(s): 0-47
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] mypy-protobuf==3.6.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] onnxruntime==1.20.1
[pip3] pyzmq==26.2.0
[pip3] sentence-transformers==3.3.1
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.48.3
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: N/A (dev)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB PHB PHB 0-47 0 N/A
GPU1 PHB X PHB PHB 0-47 0 N/A
GPU2 PHB PHB X PHB 0-47 0 N/A
GPU3 PHB PHB PHB X 0-47 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
🐛 Describe the bug
llm = LLM(model=model_id,
quantization="bitsandbytes",
load_format="bitsandbytes",
# dtype='auto',
max_lora_rank=32,
max_model_len = 5192+64,
gpu_memory_utilization=0.65,
tensor_parallel_size=4,
enforce_eager=True)
for prompt, label, inv_list in tqdm(list(zip(prompts,true_label, inv_lists))):
inv_list = inv_list + ['None']
guided_decoding_params = GuidedDecodingParams(choice=inv_list)
params = SamplingParams(temperature=0.0,
logprobs=1,
prompt_logprobs=1,
max_tokens=64,
stop=[tokenizer.eos_token, '', '### Instruction', '###'])
params.guided_decoding = guided_decoding_params
output = llm.generate(prompt, params)
prompt = output[0].prompt
generated_text = output[0].outputs[0].text.strip()
print(f"Prompt: {prompt!r}, \n true text: {label!r}")
print(f"investor list: {inv_list}")
print(f"Generated text: {generated_text!r}")
preds.append(generated_text)
del guided_decoding_params
del params
It is increasing the root volume and causing out of disk space. Please suggest.
cache is getting stored inside
root/.cache/outlines/
cache.db cache.db-shm cache.db-wal
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.