-
-
Notifications
You must be signed in to change notification settings - Fork 8.8k
Closed
Closed
Copy link
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
DEBUG 06-10 18:53:37 [__init__.py:28] No plugins for group vllm.platform_plugins found.
DEBUG 06-10 18:53:37 [__init__.py:34] Checking if TPU platform is available.
DEBUG 06-10 18:53:37 [__init__.py:44] TPU platform is not available because: No module named 'libtpu'
DEBUG 06-10 18:53:37 [__init__.py:51] Checking if CUDA platform is available.
DEBUG 06-10 18:53:37 [__init__.py:71] Confirmed CUDA platform is available.
DEBUG 06-10 18:53:37 [__init__.py:99] Checking if ROCm platform is available.
DEBUG 06-10 18:53:37 [__init__.py:113] ROCm platform is not available because: No module named 'amdsmi'
DEBUG 06-10 18:53:37 [__init__.py:120] Checking if HPU platform is available.
DEBUG 06-10 18:53:37 [__init__.py:127] HPU platform is not available because habana_frameworks is not found.
DEBUG 06-10 18:53:37 [__init__.py:137] Checking if XPU platform is available.
DEBUG 06-10 18:53:37 [__init__.py:147] XPU platform is not available because: No module named 'intel_extension_for_pytorch'
DEBUG 06-10 18:53:37 [__init__.py:154] Checking if CPU platform is available.
DEBUG 06-10 18:53:37 [__init__.py:176] Checking if Neuron platform is available.
DEBUG 06-10 18:53:37 [__init__.py:51] Checking if CUDA platform is available.
DEBUG 06-10 18:53:37 [__init__.py:71] Confirmed CUDA platform is available.
INFO 06-10 18:53:37 [__init__.py:243] Automatically detected platform cuda.
2025-06-10 18:53:38.390052: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1749581618.412744 397 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1749581618.420098 397 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
Collecting environment information...
/usr/local/lib/python3.11/dist-packages/_distutils_hack/__init__.py:31: UserWarning: Setuptools is replacing distutils. Support for replacing an already imported distutils is deprecated. In the future, this condition will fail. Register concerns at https://github.com/pypa/setuptools/issues/new?template=distutils-deprecation.yml
warnings.warn(
==============================
System Info
==============================
OS : Ubuntu 22.04.4 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : 14.0.0-1ubuntu1.1
CMake version : version 3.31.6
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.11.11 (main, Dec 4 2024, 08:55:07) [GCC 11.4.0] (64-bit runtime)
Python platform : Linux-6.6.56+-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.5.82
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA L4
GPU 1: NVIDIA L4
GPU 2: NVIDIA L4
GPU 3: NVIDIA L4
Nvidia driver version : 560.35.03
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) CPU @ 2.20GHz
CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
Stepping: 7
BogoMIPS: 4400.40
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 768 KiB (24 instances)
L1i cache: 768 KiB (24 instances)
L2 cache: 24 MiB (24 instances)
L3 cache: 38.5 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-47
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
==============================
Versions of relevant libraries
==============================
[pip3] mypy_extensions==1.1.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvcc-cu12==12.5.82
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvcomp-cu12==4.2.0.11
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] onnx==1.17.0
[pip3] optree==0.14.1
[pip3] pynvml==12.0.0
[pip3] pytorch-ignite==0.5.2
[pip3] pytorch-lightning==2.5.1.post0
[pip3] pyzmq==26.4.0
[pip3] sentence-transformers==3.4.1
[pip3] torch==2.7.0
[pip3] torchao==0.10.0
[pip3] torchaudio==2.7.0
[pip3] torchdata==0.11.0
[pip3] torchinfo==1.8.0
[pip3] torchmetrics==1.7.1
[pip3] torchsummary==1.5.1
[pip3] torchtune==0.6.1
[pip3] torchvision==0.22.0
[pip3] transformers==4.51.3
[pip3] triton==3.3.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.9.0.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB PHB PHB 0-45 0 N/A
GPU1 PHB X PHB PHB 0-45 0 N/A
GPU2 PHB PHB X PHB 0-45 0 N/A
GPU3 PHB PHB PHB X 0-45 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
PYTORCH_NVML_BASED_CUDA_CHECK=1
NVIDIA_REQUIRE_CUDA=cuda>=12.5 brand=unknown,driver>=470,driver<471 brand=grid,driver>=470,driver<471 brand=tesla,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=vapps,driver>=470,driver<471 brand=vpc,driver>=470,driver<471 brand=vcs,driver>=470,driver<471 brand=vws,driver>=470,driver<471 brand=cloudgaming,driver>=470,driver<471 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551
NCCL_VERSION=2.22.3-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
VLLM_WORKER_MULTIPROC_METHOD=spawn
NVIDIA_PRODUCT_NAME=CUDA
TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_root
CUDA_VERSION=12.5.1
VLLM_TRACE_FUNCTION=1
TORCHINDUCTOR_COMPILE_THREADS=1
LD_LIBRARY_PATH=/usr/local/lib/python3.11/dist-packages/cv2/../../lib64:/usr/local/lib/python3.11/dist-packages/cv2/../../lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
MKL_THREADING_LAYER=GNU
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
VLLM_LOGGING_LEVEL=DEBUG
CUDA_MODULE_LOADING=LAZY
NCCL_CUMEM_ENABLE=0
VLLM_USE_V1=1
🐛 Describe the bug
Running the following on Kaggle Notebook GPU L4 x4
!pip install vllm
from vllm import LLM
llm = LLM(model="facebook/opt-125m")
gives the following error whenever vllm is installed the first time.
INFO 06-10 19:07:55 [__init__.py:243] Automatically detected platform cuda.
2025-06-10 19:07:57.514106: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1749582477.759738 99 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1749582477.832065 99 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
INFO 06-10 19:08:14 [__init__.py:31] Available plugins for group vllm.general_plugins:
INFO 06-10 19:08:14 [__init__.py:33] - lora_filesystem_resolver -> vllm.plugins.lora_resolvers.filesystem_resolver:register_filesystem_resolver
INFO 06-10 19:08:14 [__init__.py:36] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.
config.json: 100%
651/651 [00:00<00:00, 83.0kB/s]
INFO 06-10 19:08:29 [config.py:793] This model supports multiple tasks: {'embed', 'score', 'classify', 'reward', 'generate'}. Defaulting to 'generate'.
INFO 06-10 19:08:29 [config.py:2118] Chunked prefill is enabled with max_num_batched_tokens=8192.
tokenizer_config.json: 100%
685/685 [00:00<00:00, 101kB/s]
vocab.json: 100%
899k/899k [00:00<00:00, 17.1MB/s]
merges.txt: 100%
456k/456k [00:00<00:00, 26.1MB/s]
special_tokens_map.json: 100%
441/441 [00:00<00:00, 69.6kB/s]
generation_config.json: 100%
137/137 [00:00<00:00, 21.2kB/s]
WARNING 06-10 19:08:31 [utils.py:2531] We must use the `spawn` multiprocessing start method. Overriding VLLM_WORKER_MULTIPROC_METHOD to 'spawn'. See https://docs.vllm.ai/en/latest/usage/troubleshooting.html#python-multiprocessing for more information. Reason: CUDA is initialized
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/tmp/ipykernel_99/2748578261.py in <cell line: 0>()
1 get_ipython().system('pip install vllm')
2 from vllm import LLM
----> 3 llm = LLM(model="facebook/opt-125m")
/usr/local/lib/python3.11/dist-packages/vllm/utils.py in inner(*args, **kwargs)
1181 )
1182
-> 1183 return fn(*args, **kwargs)
1184
1185 return inner # type: ignore
/usr/local/lib/python3.11/dist-packages/vllm/entrypoints/llm.py in __init__(self, model, tokenizer, tokenizer_mode, skip_tokenizer_init, trust_remote_code, allowed_local_media_path, tensor_parallel_size, dtype, quantization, revision, tokenizer_revision, seed, gpu_memory_utilization, swap_space, cpu_offload_gb, enforce_eager, max_seq_len_to_capture, disable_custom_all_reduce, disable_async_output_proc, hf_token, hf_overrides, mm_processor_kwargs, task, override_pooler_config, compilation_config, **kwargs)
251
252 # Create the Engine (autoselects V0 vs V1)
--> 253 self.llm_engine = LLMEngine.from_engine_args(
254 engine_args=engine_args, usage_context=UsageContext.LLM_CLASS)
255 self.engine_class = type(self.llm_engine)
/usr/local/lib/python3.11/dist-packages/vllm/engine/llm_engine.py in from_engine_args(cls, engine_args, usage_context, stat_loggers)
499 engine_cls = V1LLMEngine
500
--> 501 return engine_cls.from_vllm_config(
502 vllm_config=vllm_config,
503 usage_context=usage_context,
/usr/local/lib/python3.11/dist-packages/vllm/v1/engine/llm_engine.py in from_vllm_config(cls, vllm_config, usage_context, stat_loggers, disable_log_stats)
121 disable_log_stats: bool = False,
122 ) -> "LLMEngine":
--> 123 return cls(vllm_config=vllm_config,
124 executor_class=Executor.get_class(vllm_config),
125 log_stats=(not disable_log_stats),
/usr/local/lib/python3.11/dist-packages/vllm/v1/engine/llm_engine.py in __init__(self, vllm_config, executor_class, log_stats, usage_context, stat_loggers, mm_registry, use_cached_outputs, multiprocess_mode)
98
99 # EngineCore (gets EngineCoreRequests and gives EngineCoreOutputs)
--> 100 self.engine_core = EngineCoreClient.make_client(
101 multiprocess_mode=multiprocess_mode,
102 asyncio_mode=False,
/usr/local/lib/python3.11/dist-packages/vllm/v1/engine/core_client.py in make_client(multiprocess_mode, asyncio_mode, vllm_config, executor_class, log_stats)
73
74 if multiprocess_mode and not asyncio_mode:
---> 75 return SyncMPClient(vllm_config, executor_class, log_stats)
76
77 return InprocClient(vllm_config, executor_class, log_stats)
/usr/local/lib/python3.11/dist-packages/vllm/v1/engine/core_client.py in __init__(self, vllm_config, executor_class, log_stats)
578 def __init__(self, vllm_config: VllmConfig, executor_class: type[Executor],
579 log_stats: bool):
--> 580 super().__init__(
581 asyncio_mode=False,
582 vllm_config=vllm_config,
/usr/local/lib/python3.11/dist-packages/vllm/v1/engine/core_client.py in __init__(self, asyncio_mode, vllm_config, executor_class, log_stats)
416
417 # Wait for engine core process(es) to start.
--> 418 self._wait_for_engine_startup(output_address, parallel_config)
419
420 self.utility_results: dict[int, AnyFuture] = {}
/usr/local/lib/python3.11/dist-packages/vllm/v1/engine/core_client.py in _wait_for_engine_startup(self, output_address, parallel_config)
452 parallel_config: ParallelConfig):
453 # Get a sync handle to the socket which can be sync or async.
--> 454 sync_input_socket = zmq.Socket.shadow(self.input_socket)
455
456 # Wait for engine core process(es) to send ready messages.
/usr/local/lib/python3.11/dist-packages/zmq/sugar/socket.py in shadow(cls, address)
166 copy_threshold=copy_threshold,
167 )
--> 168 if self._shadow_obj and shadow_context:
169 # keep self.context reference if shadowing a Socket object
170 self.context = shadow_context
/usr/local/lib/python3.11/dist-packages/zmq/utils/interop.py in cast_int_addr(n)
27 return int(ffi.cast("size_t", n))
28
---> 29 raise ValueError(f"Cannot cast {n!r} to int")
ValueError: Cannot cast <zmq.Socket(zmq.ROUTER) at 0x7ad308169fd0> to int
This issue happens 100% of the time on a new vllm install. If you restart the notebook and load the model without installing vllm again, then the issue is gone. This prohibit the notebook from executing on a clean state.
This issue appears after 0.8.4. I was testing new model so downgrading is not an option. Setting vllm to v0 triggers other OOM issues.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
kunibald413
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working