-
-
Notifications
You must be signed in to change notification settings - Fork 9.5k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
INFO 06-17 14:15:03 [__init__.py:243] Automatically detected platform cuda.
WARNING 06-17 14:15:03 [cuda.py:435] Detected different devices in the system: NVIDIA GeForce RTX 5090, NVIDIA GeForce RTX 4090, NVIDIA GeForce RTX 3090. Please make sure to set `CUDA_DEVICE_ORDER=PCI_BUS_ID` to avoid unexpected behavior.
Collecting environment information...
/home/unat/.venv/lib/python3.12/site-packages/torch/cuda/__init__.py:287: UserWarning:
NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90.
If you want to use the NVIDIA GeForce RTX 5090 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/
warnings.warn(
==============================
System Info
==============================
OS : Ubuntu 24.04.1 LTS (x86_64)
GCC version : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version : Could not collect
CMake version : version 3.28.3
Libc version : glibc-2.39
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.3 (main, Feb 4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime)
Python platform : Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.39
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.0.140
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA GeForce RTX 5090
GPU 1: NVIDIA GeForce RTX 4090
GPU 2: NVIDIA GeForce RTX 3090
Nvidia driver version : 576.52
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 24
On-line CPU(s) list: 0-23
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 9 7900X 12-Core Processor
CPU family: 25
Model: 97
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 1
Stepping: 2
BogoMIPS: 9399.76
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm
Virtualization: AMD-V
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 384 KiB (12 instances)
L1i cache: 384 KiB (12 instances)
L2 cache: 12 MiB (12 instances)
L3 cache: 32 MiB (1 instance)
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.2.5+cu126torch2.6
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0+cu126
[pip3] torchaudio==2.7.0+cu126
[pip3] torchvision==0.22.0+cu126
[pip3] transformers==4.52.4
[pip3] triton==3.3.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.9.1.dev132+g118ff9211 (git sha: 118ff9211)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X SYS SYS N/A
GPU1 SYS X SYS N/A
GPU2 SYS SYS X N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
I'm running docker image with following params:
docker run --name vllm-qwen3-30b --rm --gpus all --init
-e "CUDA_VISIBLE_DEVICES=1,2"
-e "VLLM_ATTENTION_BACKEND=FLASH_ATTN"
-e "VLLM_USE_V1=0"
-e "CUDA_DEVICE_ORDER=PCI_BUS_ID"
-v "\\wsl$\Ubuntu\home\unat\vllm\huggingface:/root/.cache/huggingface"
-v "\\wsl$\Ubuntu\home\unat\vllm\cache:/root/.cache/vllm"
-p ${PORT}:8000
--ipc=host
vllm/vllm-openai:v0.9.0.1
--model /root/.cache/huggingface/Qwen3-30B-A3B-FP8
-tp 2
--enable-expert-parallel
--enable-auto-tool-choice
--tool-call-parser hermes
--reasoning-parser qwen3
--max-model-len 65536
--served-model-name qwen3-30b
--max-seq-len-to-capture 65536
--max_num_seqs 2
--cuda_graph_sizes 4
--rope-scaling {\"rope_type\":\"yarn\",\"factor\":2.0,\"original_max_position_embeddings\":32768}
--gpu-memory-utilization 0.95
--enable-prefix-caching
--enable-chunked-prefill
--dtype half
- CUDA0 - 5090
- CUDA1 - 4090
- CUDA2 - 3090
And it crashes with error ValueError("type fp8e4nv not supported in this architecture. The supported fp8 dtypes are ('fp8e4b15', 'fp8e5')")
. But same parameters on same system works fine with RTX3090 + RTX3090.
Now, I change CUDA_VISIBLE_DEVICES=1,2
to CUDA_VISIBLE_DEVICES=2,1
and it works fine with RTX4090+RTX3090 with warning about poor performance.
So, I came to conclusion, VLLM chose kernel with native FP8 because first GPU (4090) has FP8 support, and then crashed because not all GPUs has native FP8.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working