Closed
Description
Your current environment
The output of python collect_env.py
==============================
System Info
==============================
OS : Ubuntu 22.04.3 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : version 3.22.1
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.11 | packaged by Anaconda, Inc. | (main, Jun 5 2025, 13:09:17) [GCC 11.2.0] (64-bit runtime)
Python platform : Linux-5.15.0-122-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.2.140
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration : GPU 0: NVIDIA L40
Nvidia driver version : 560.35.03
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.5
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: HygonGenuine
Model name: Hygon C86 7390 32-core Processor
CPU family: 24
Model: 2
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
Stepping: 2
Frequency boost: enabled
CPU max MHz: 2700.0000
CPU min MHz: 1600.0000
BogoMIPS: 5399.96
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev sev_es
Virtualization: AMD-V
L1d cache: 2 MiB (64 instances)
L1i cache: 4 MiB (64 instances)
L2 cache: 32 MiB (64 instances)
L3 cache: 128 MiB (16 instances)
NUMA node(s): 8
NUMA node0 CPU(s): 0-7,64-71
NUMA node1 CPU(s): 8-15,72-79
NUMA node2 CPU(s): 16-23,80-87
NUMA node3 CPU(s): 24-31,88-95
NUMA node4 CPU(s): 32-39,96-103
NUMA node5 CPU(s): 40-47,104-111
NUMA node6 CPU(s): 48-55,112-119
NUMA node7 CPU(s): 56-63,120-127
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT vulnerable
Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0+cu126
[pip3] torchaudio==2.7.0+cu126
[pip3] torchvision==0.22.0+cu126
[pip3] transformers==4.52.4
[pip3] triton==3.3.0
[conda] numpy 2.2.6 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi
[conda] nvidia-cufile-cu12 1.11.1.6 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] torch 2.7.0+cu126 pypi_0 pypi
[conda] torchaudio 2.7.0+cu126 pypi_0 pypi
[conda] torchvision 0.22.0+cu126 pypi_0 pypi
[conda] transformers 4.52.4 pypi_0 pypi
[conda] triton 3.3.0 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.9.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 48-55,112-119 6 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=GPU-d1c7a1be-5f8a-f737-4fb5-587dca0bc991
NVIDIA_REQUIRE_CUDA=cuda>=12.2 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NCCL_VERSION=2.18.5-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility,graphics,video
NVIDIA_PRODUCT_NAME=CUDA
CUDA_VERSION=12.2.2
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
OMP_NUM_THREADS=64
MKL_NUM_THREADS=64
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
When I run the vllm/benchmarks/kernels/benchmark_marlin.py script using:
use
python benchmark_marlin.py
it cannot run. And print that
INFO 06-20 21:54:24 [__init__.py:244] Automatically detected platform cuda.
Benchmarking models:
[0] meta-llama/Llama-2-7b-hf/TP1
Testing: meta-llama/Llama-2-7b-hf/TP1, act=False k_full=False, q=uint4b8, g=-1, MKN=(1x4096x12288)
Traceback (most recent call last):
File "/root/vllm/benchmarks/kernels/benchmark_marlin.py", line 342, in <module>
main(args)
File "/root/vllm/benchmarks/kernels/benchmark_marlin.py", line 301, in main
bench_run(
File "/root/vllm/benchmarks/kernels/benchmark_marlin.py", line 200, in bench_run
).blocked_autorange(min_run_time=min_run_time)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm_cp312/lib/python3.12/site-packages/torch/utils/benchmark/utils/timer.py", line 376, in blocked_autorange
number = self._estimate_block_size(min_run_time)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm_cp312/lib/python3.12/site-packages/torch/utils/benchmark/utils/timer.py", line 323, in _estimate_block_size
time_taken = self._timeit(number)
^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm_cp312/lib/python3.12/site-packages/torch/utils/benchmark/utils/timer.py", line 268, in _timeit
return max(self._timer.timeit(number), 1e-9)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm_cp312/lib/python3.12/timeit.py", line 180, in timeit
timing = self.inner(it, self.timer)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "<timeit-src>", line 6, in inner
File "/root/miniconda3/envs/vllm_cp312/lib/python3.12/site-packages/vllm/_custom_ops.py", line 1056, in gptq_marlin_gemm
workspace, b_q_type.id, size_m,
^^^^^^^^^^^
AttributeError: 'int' object has no attribute 'id'
🙏 Request
Could you please confirm whether this is a bug in the benchmark script, or if I’m missing a dependency or type definition?
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.