Skip to content

[Bug]: file in vllm/benchmarks/kernels/benchmark_marlin.py cannot execute #19909

Closed
@shaoxiawjc

Description

@shaoxiawjc

Your current environment

The output of python collect_env.py
==============================
        System Info
==============================
OS                           : Ubuntu 22.04.3 LTS (x86_64)
GCC version                  : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version                : Could not collect
CMake version                : version 3.22.1
Libc version                 : glibc-2.35

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.0+cu126
Is debug build               : False
CUDA used to build PyTorch   : 12.6
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.11 | packaged by Anaconda, Inc. | (main, Jun  5 2025, 13:09:17) [GCC 11.2.0] (64-bit runtime)
Python platform              : Linux-5.15.0-122-generic-x86_64-with-glibc2.35

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.2.140
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : GPU 0: NVIDIA L40
Nvidia driver version        : 560.35.03
cuDNN version                : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.5
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               128
On-line CPU(s) list:                  0-127
Vendor ID:                            HygonGenuine
Model name:                           Hygon C86 7390 32-core Processor
CPU family:                           24
Model:                                2
Thread(s) per core:                   2
Core(s) per socket:                   32
Socket(s):                            2
Stepping:                             2
Frequency boost:                      enabled
CPU max MHz:                          2700.0000
CPU min MHz:                          1600.0000
BogoMIPS:                             5399.96
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev sev_es
Virtualization:                       AMD-V
L1d cache:                            2 MiB (64 instances)
L1i cache:                            4 MiB (64 instances)
L2 cache:                             32 MiB (64 instances)
L3 cache:                             128 MiB (16 instances)
NUMA node(s):                         8
NUMA node0 CPU(s):                    0-7,64-71
NUMA node1 CPU(s):                    8-15,72-79
NUMA node2 CPU(s):                    16-23,80-87
NUMA node3 CPU(s):                    24-31,88-95
NUMA node4 CPU(s):                    32-39,96-103
NUMA node5 CPU(s):                    40-47,104-111
NUMA node6 CPU(s):                    48-55,112-119
NUMA node7 CPU(s):                    56-63,120-127
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; untrained return thunk; SMT vulnerable
Vulnerability Spec rstack overflow:   Mitigation; safe RET, no microcode
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0+cu126
[pip3] torchaudio==2.7.0+cu126
[pip3] torchvision==0.22.0+cu126
[pip3] transformers==4.52.4
[pip3] triton==3.3.0
[conda] numpy                     2.2.6                    pypi_0    pypi
[conda] nvidia-cublas-cu12        12.6.4.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.6.80                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.6.77                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.6.77                  pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.5.1.17                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.3.0.4                 pypi_0    pypi
[conda] nvidia-cufile-cu12        1.11.1.6                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.7.77                pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.7.1.2                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.5.4.2                 pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.26.2                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.85                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.6.77                  pypi_0    pypi
[conda] pyzmq                     26.4.0                   pypi_0    pypi
[conda] torch                     2.7.0+cu126              pypi_0    pypi
[conda] torchaudio                2.7.0+cu126              pypi_0    pypi
[conda] torchvision               0.22.0+cu126             pypi_0    pypi
[conda] transformers              4.52.4                   pypi_0    pypi
[conda] triton                    3.3.0                    pypi_0    pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.9.1
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      48-55,112-119   6               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=GPU-d1c7a1be-5f8a-f737-4fb5-587dca0bc991
NVIDIA_REQUIRE_CUDA=cuda>=12.2 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NCCL_VERSION=2.18.5-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility,graphics,video
NVIDIA_PRODUCT_NAME=CUDA
CUDA_VERSION=12.2.2
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
OMP_NUM_THREADS=64
MKL_NUM_THREADS=64
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

When I run the vllm/benchmarks/kernels/benchmark_marlin.py script using:

use

python benchmark_marlin.py

it cannot run. And print that

INFO 06-20 21:54:24 [__init__.py:244] Automatically detected platform cuda.
Benchmarking models:
[0]  meta-llama/Llama-2-7b-hf/TP1
Testing: meta-llama/Llama-2-7b-hf/TP1, act=False k_full=False, q=uint4b8, g=-1, MKN=(1x4096x12288)
Traceback (most recent call last):
  File "/root/vllm/benchmarks/kernels/benchmark_marlin.py", line 342, in <module>
    main(args)
  File "/root/vllm/benchmarks/kernels/benchmark_marlin.py", line 301, in main
    bench_run(
  File "/root/vllm/benchmarks/kernels/benchmark_marlin.py", line 200, in bench_run
    ).blocked_autorange(min_run_time=min_run_time)
      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/vllm_cp312/lib/python3.12/site-packages/torch/utils/benchmark/utils/timer.py", line 376, in blocked_autorange
    number = self._estimate_block_size(min_run_time)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/vllm_cp312/lib/python3.12/site-packages/torch/utils/benchmark/utils/timer.py", line 323, in _estimate_block_size
    time_taken = self._timeit(number)
                 ^^^^^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/vllm_cp312/lib/python3.12/site-packages/torch/utils/benchmark/utils/timer.py", line 268, in _timeit
    return max(self._timer.timeit(number), 1e-9)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/miniconda3/envs/vllm_cp312/lib/python3.12/timeit.py", line 180, in timeit
    timing = self.inner(it, self.timer)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "<timeit-src>", line 6, in inner
  File "/root/miniconda3/envs/vllm_cp312/lib/python3.12/site-packages/vllm/_custom_ops.py", line 1056, in gptq_marlin_gemm
    workspace, b_q_type.id, size_m,
               ^^^^^^^^^^^
AttributeError: 'int' object has no attribute 'id'

🙏 Request
Could you please confirm whether this is a bug in the benchmark script, or if I’m missing a dependency or type definition?

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

Labels

bugSomething isn't working

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions