Skip to content

[Bug]: disable_any_whitespace is ineffective when passed through SamplingParams' guided_decoding in the V1 engine. #19945

Open
@xming521

Description

@xming521

🐛 Describe the bug

llm=LLM(**engine_args)
results = llm.chat(
        messages_list, sampling_params, lora_request=lora_request,
          chat_template_kwargs={"enable_thinking": False }
    ) 

  1. disable_any_whitespace seems to be accessible only from vllm_config, not from SamplingParams.
    self.vllm_config.decoding_config.disable_any_whitespace
  2. Why is validate_guidance_grammar being executed for every input, even though the inputs all have the same SamplingParams, and validate_guidance_grammar seems to only be validating grammar?
    validate_guidance_grammar(params, tokenizer=None)

Your current environment

The output of python collect_env.py
uv is set
==============================
        System Info
==============================
OS                           : Ubuntu 20.04.6 LTS (x86_64)
GCC version                  : (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version                : Could not collect
CMake version                : Could not collect
Libc version                 : glibc-2.35

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.0+cu126
Is debug build               : False
CUDA used to build PyTorch   : 12.6
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.10.17 (main, Apr  9 2025, 04:03:39) [Clang 20.1.0 ] (64-bit runtime)
Python platform              : Linux-5.4.0-176-generic-x86_64-with-glibc2.35

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 11.8.89
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: NVIDIA GeForce RTX 3090
GPU 3: NVIDIA GeForce RTX 3090

Nvidia driver version        : 570.124.06
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      46 bits physical, 48 bits virtual
CPU(s):                             40
On-line CPU(s) list:                0-39
Thread(s) per core:                 2
Core(s) per socket:                 10
Socket(s):                          2
NUMA node(s):                       2
Vendor ID:                          GenuineIntel
CPU family:                         6
Model:                              85
Model name:                         Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
Stepping:                           7
CPU MHz:                            1000.048
CPU max MHz:                        3200.0000
CPU min MHz:                        1000.0000
BogoMIPS:                           4800.00
Virtualization:                     VT-x
L1d cache:                          640 KiB
L1i cache:                          640 KiB
L2 cache:                           20 MiB
L3 cache:                           27.5 MiB
NUMA node0 CPU(s):                  0-9,20-29
NUMA node1 CPU(s):                  10-19,30-39
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit:        KVM: Mitigation: Split huge pages
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; TSX disabled
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities

==============================
Versions of relevant libraries
==============================
[pip3] mypy-extensions==1.1.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0+cu126
[pip3] torchaudio==2.7.0+cu128
[pip3] torchvision==0.22.0+cu128
[pip3] transformers==4.52.1
[pip3] triton==3.3.0
[conda] blas                      1.0                         mkl    https://repo.anaconda.com/pkgs/main
[conda] mkl                       2018.0.2                      1    https://repo.anaconda.com/pkgs/main
[conda] mkl-service               1.1.2            py36h17a0993_4    https://repo.anaconda.com/pkgs/main
[conda] mkl_fft                   1.0.1            py36h3010b51_0    https://repo.anaconda.com/pkgs/main
[conda] mkl_random                1.0.1            py36h629b387_0    https://repo.anaconda.com/pkgs/main
[conda] numpy                     1.14.3           py36hcd700cb_1    https://repo.anaconda.com/pkgs/main
[conda] numpy-base                1.14.3           py36h9be14a7_1    https://repo.anaconda.com/pkgs/main
[conda] numpydoc                  0.8.0                    py36_0    https://repo.anaconda.com/pkgs/main
[conda] pyzmq                     17.0.0           py36h14c3975_0    https://repo.anaconda.com/pkgs/main

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.9.1
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      PIX     PIX     PIX     0-9,20-29       0               N/A
GPU1    PIX      X      PIX     PIX     0-9,20-29       0               N/A
GPU2    PIX     PIX      X      PIX     0-9,20-29       0               N/A
GPU3    PIX     PIX     PIX      X      0-9,20-29       0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
LD_LIBRARY_PATH=/disk2/zhangym/software/TensorRT-8.6.0.12/lib:/usr/local/cuda-11.8/lib64
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY```

</details>


Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions