-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy path265D. Good Sequences.cpp
64 lines (52 loc) · 1.32 KB
/
265D. Good Sequences.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/*
Idea:
- Dynamic programming with Prime factorization.
- Any two numbers share at least one prime factor, then the GCD between them
not equal to 1.
- Based on the previous point we can start a DP from each index and try
to add a new number to the sequence based on the prime factorization of the
current number.
*/
#include <bits/stdc++.h>
using namespace std;
int const N = 1e5 + 1;
int n, a[N], dp[N];
vector<vector<int> > g, d;
int rec(int idx) {
if(idx == n)
return 0;
int &ret = dp[idx];
if(ret != -1)
return ret;
ret = 0;
for(int i = 0, cur; i < d[idx].size(); ++i) {
cur = upper_bound(g[d[idx][i]].begin(), g[d[idx][i]].end(), idx) - g[d[idx][i]].begin();
if(cur != g[d[idx][i]].size())
ret = max(ret, rec(g[d[idx][i]][cur]) + 1);
}
return ret;
}
int main() {
g.resize(N);
d.resize(N);
scanf("%d", &n);
for(int i = 0; i < n; ++i) {
scanf("%d", a + i);
int x = a[i], sqrtx = sqrt(x);
for(int j = 2, fr; j <= sqrtx; ++j) {
fr = 0;
while(x % j == 0)
++fr, x /= j;
if(fr != 0)
g[j].push_back(i), d[i].push_back(j);
}
if(x != 1)
g[x].push_back(i), d[i].push_back(x);
}
memset(dp, -1, sizeof dp);
int res = 0;
for(int i = 0; i < n; ++i)
res = max(res, rec(i) + 1);
printf("%d\n", res);
return 0;
}