-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy path604B. More Cowbell.cpp
69 lines (59 loc) · 1.11 KB
/
604B. More Cowbell.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*
Idea:
- Greedy with Binary search.
- Greedily we can choose some bells and put them alone in some boxes.
- Then we can do binary search on the other bells to find the smallest
box size.
*/
#include <bits/stdc++.h>
using namespace std;
int const N = 1e5 + 1;
int n, k, a[N];
bool can(int mid) {
int have = k;
for(int i = 0, j = n - 1; i <= j; ++i, --j) {
if(i == j) {
if(a[i] > mid)
return false;
--have;
break;
} else {
if(a[i] + a[j] <= mid)
--have;
else {
for(int k = i; k <= j; ++k) {
if(k + 1 <= j && a[k] + a[k + 1] <= mid) {
++k, --have;
continue;
}
if(a[k] > mid)
return false;
--have;
}
break;
}
}
}
return have >= 0;
}
int main() {
cin >> n >> k;
for(int i = 0; i < n; ++i)
cin >> a[i];
if(k >= n) {
cout << a[n - 1] << endl;
return 0;
}
int rem = (k * 2) - n;
n -= rem, k -= rem;
int l = 1, r = 3000000, mid, res = -1;
while(l <= r) {
mid = (l + r) / 2;
if(can(mid))
res = mid, r = mid - 1;
else
l = mid + 1;
}
cout << max(res, a[n + rem - 1]) << endl;
return 0;
}