forked from yogykwan/acm-challenge-workbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaoj2214.cpp
84 lines (67 loc) · 2.06 KB
/
aoj2214.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/*
* AOJ 2214: Warp Hall
* 题意:从(1,1)要到终点(m,n)。每次向右或向上走,但一旦遇到虫洞起点,会直接到达右上方的虫洞终点。问有多少种路线。
* 类型:计数DP
* 算法:对于虫洞i(ai,bi)到(ci,di),(1,1)到(ai,bi)的路线数为di,则对于以虫洞构成的矩形为中心,向上和向右发散的L区,都要去掉di。将虫洞排序,DP求到达到每个虫洞入口的方案数。
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL MOD = 1000000007ll;
inline LL add(LL a, LL b) { return (a + b) % MOD; }
inline LL sub(LL a, LL b) { return (a - b + MOD) % MOD; }
inline LL mul(LL a, LL b) { return a * b % MOD; }
LL f[200010];
LL Inverse(LL a, LL p = MOD) {
if (a == 1) return 1;
return sub(0, mul(p / a, Inverse(p % a, p)));
}
LL C(LL a, LL b) {
return mul(mul(f[a], Inverse(f[b])), Inverse(f[a - b]));
}
struct Warp {
int sx, sy, tx, ty;
bool operator<(const Warp &w) const {
if (sx != w.sx) return sx < w.sx;
return sy < w.sy;
}
} w[1010];
LL d[1010];
int m, n, k;
LL Gao(LL sx, LL sy, LL tx, LL ty) {
if (sx > tx || sy > ty) return 0;
return C(tx - sx + ty - sy, tx - sx);
}
int main() {
freopen("/Users/yogy/acm-challenge-workbook/db.in", "r", stdin);
f[0] = 1;
for (LL i = 1; i <= 200000; ++i) {
f[i] = mul(f[i - 1], i);
}
while (scanf("%d%d%d", &m, &n, &k) != EOF && m + n + k > 0) {
for (int i = 0; i < k; ++i) {
scanf("%d%d%d%d", &w[i].sx, &w[i].sy, &w[i].tx, &w[i].ty);
--w[i].sx;
--w[i].sy;
--w[i].tx;
--w[i].ty;
}
memset(d, 0, sizeof(d));
sort(w, w + k);
w[k].sx = m - 1;
w[k].sy = n - 1;
for (int i = 0; i <= k; ++i) {
d[i] = C(w[i].sx + w[i].sy, w[i].sx);
for (int j = 0; j < i; ++j) {
d[i] = add(d[i],
mul(d[j],
sub(Gao(w[j].tx, w[j].ty, w[i].sx, w[i].sy),
Gao(w[j].sx, w[j].sy, w[i].sx, w[i].sy))));
}
}
printf("%lld\n", d[k]);
}
return 0;
}