forked from yogykwan/acm-challenge-workbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaoj2266.cpp
109 lines (93 loc) · 2.85 KB
/
aoj2266.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/*
* AOJ 2266: Cache Strategy
* 题意:有n个重量不同的球和m个框,再给出一个可重复的放球序列。依照序列顺序将此刻不在框内的球放入,若选择放入的框已有球,则需花费新球数量的重量来替换。求最小总花费。
* 类型:最小费
* 算法:将输入序列相邻相等的驱去重后,如每次都替换,则总花费为新序列的重量和。在序列中,两个相同的球之间的左闭右开序列区间如果放在同一框内,则总花费可减去该球重量。建图时可将上述区间的起点和终点建容量1花费负重量的边,再用容量为INF花费0的边将整个图连起来。求最小费用流即为可以节约的最大值的相反数,加上预处理的原始总重量即为答案。因为图有负环,所以求最短增广路不能用Dijkstra,改用Bellman-Ford。
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> pii;
const int INF = 0x3f3f3f3f;
int a[10010], w[10010];
int pre[10010];
struct Edge {
Edge() {}
Edge(int _v, int _cap, int _cost, int _rev) : v(_v), cap(_cap), cost(_cost), rev(_rev) {}
int v, cap, cost, rev;
};
vector<Edge> e[10010];
int n;
int d[10010];
int pv[10010], pe[10010];
void AddEdge(int u, int v, int cap, int cost) {
e[u].push_back(Edge(v, cap, cost, e[v].size()));
e[v].push_back(Edge(u, 0, -cost, e[u].size() - 1));
}
int MinCostFlow(int s, int t, int f) {
int ans = 0;
while (f > 0) {
memset(d, 0x3f, sizeof(d));
d[s] = 0;
bool update = true;
while (update) {
update = false;
for (int i = 0; i < n; ++i) {
if (d[i] == INF) continue;
for (int j = 0; j < e[i].size(); ++j) {
Edge &te = e[i][j];
if (te.cap > 0 && d[te.v] > d[i] + te.cost) {
d[te.v] = d[i] + te.cost;
pv[te.v] = i;
pe[te.v] = j;
update = true;
}
}
}
}
if (d[t] == INF) {
return -1;
}
int cur = f;
for (int i = t; i != s; i = pv[i]) {
cur = min(cur, e[pv[i]][pe[i]].cap);
}
ans += cur * d[t];
f -= cur;
for (int i = t; i != s; i = pv[i]) {
Edge &te = e[pv[i]][pe[i]];
te.cap -= cur;
e[i][te.rev].cap += cur;
}
}
return ans;
}
int main() {
int M, N, K, ans = 0;
scanf("%d%d%d", &M, &N, &K);
for (int i = 0; i < N; ++i) {
scanf("%d", &w[i]);
}
for (int i = 0; i < K; ++i) {
scanf("%d", &a[i]);
--a[i];
}
K = unique(a, a + K) - a;
memset(pre, -1, sizeof(pre));
for (int i = 0; i < K; ++i) {
ans += w[a[i]];
if (pre[a[i]] != -1) {
AddEdge(pre[a[i]], i - 1, 1, -w[a[i]]);
}
pre[a[i]] = i;
}
for (int i = 1; i < K; ++i) {
AddEdge(i - 1, i, M - 1, 0);
}
n = K;
ans += MinCostFlow(0, n - 1, M - 1);
printf("%d\n", ans);
return 0;
}