forked from yogykwan/acm-challenge-workbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpoj1930.cpp
63 lines (57 loc) · 1.32 KB
/
poj1930.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
* POJ 1930: Dead Fraction
* 题意:给出小于1的无限循环小数的前几位,求可能相等的最简分数中分母最小的。
* 类型:辗转相除法
* 算法:枚举循环后缀长度,将小数点向后移动该长度,相减再相除,得到对应的分子分母,分别除以最大公约数得到最简分数。
*/
#include <cstdio>
#include <iostream>
#include <string>
#include <cmath>
using namespace std;
typedef long long LL;
LL Gcd(LL a, LL b) {
LL t;
while(b) {
t = a % b;
a = b;
b = t;
}
return a;
}
LL _stoll(string s) { // c++11 std::stoll
LL v = 0;
for(int i = 0; i < s.length(); ++i) {
v = v * 10 + s[i] - '0';
}
return v;
}
int main() {
string s, sa, sb;
LL la, lb;
LL num, den, g;
LL ansd, ansn;
while(cin >> s && s.length() > 1) {
s = s.substr(2, s.length() - 5);
int n = s.length();
ansd = 0;
for(int i = 0; i < n; ++i) {
int j = n - i;
sa = s.substr(0, i);
sb = s.substr(i);
la = i ? _stoll(sa): 0;
lb = _stoll(sb);
num = la * (LL)pow(10, j) + lb - la;
den = ((LL)pow(10, j) - 1) * (LL)pow(10, i);
g = Gcd(num, den);
num /= g;
den /= g;
if(!ansd || den < ansd) {
ansd = den;
ansn = num;
}
}
printf("%lld/%lld\n", ansn, ansd);
}
return 0;
}