-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDiscretization.go
executable file
·129 lines (109 loc) · 2.79 KB
/
Discretization.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
package layer
import tf "github.com/galeone/tensorflow/tensorflow/go"
type LDiscretization struct {
binBoundaries interface{}
dtype DataType
epsilon float64
inputs []Layer
name string
numBins interface{}
shape tf.Shape
trainable bool
layerWeights []*tf.Tensor
}
func Discretization() *LDiscretization {
return &LDiscretization{
binBoundaries: nil,
dtype: Float32,
epsilon: 0.01,
name: UniqueName("discretization"),
numBins: nil,
trainable: true,
}
}
func (l *LDiscretization) SetBinBoundaries(binBoundaries interface{}) *LDiscretization {
l.binBoundaries = binBoundaries
return l
}
func (l *LDiscretization) SetDtype(dtype DataType) *LDiscretization {
l.dtype = dtype
return l
}
func (l *LDiscretization) SetEpsilon(epsilon float64) *LDiscretization {
l.epsilon = epsilon
return l
}
func (l *LDiscretization) SetName(name string) *LDiscretization {
l.name = name
return l
}
func (l *LDiscretization) SetNumBins(numBins interface{}) *LDiscretization {
l.numBins = numBins
return l
}
func (l *LDiscretization) SetShape(shape tf.Shape) *LDiscretization {
l.shape = shape
return l
}
func (l *LDiscretization) SetTrainable(trainable bool) *LDiscretization {
l.trainable = trainable
return l
}
func (l *LDiscretization) SetLayerWeights(layerWeights []*tf.Tensor) *LDiscretization {
l.layerWeights = layerWeights
return l
}
func (l *LDiscretization) GetShape() tf.Shape {
return l.shape
}
func (l *LDiscretization) GetDtype() DataType {
return l.dtype
}
func (l *LDiscretization) SetInputs(inputs ...Layer) Layer {
l.inputs = inputs
return l
}
func (l *LDiscretization) GetInputs() []Layer {
return l.inputs
}
func (l *LDiscretization) GetName() string {
return l.name
}
func (l *LDiscretization) GetLayerWeights() []*tf.Tensor {
return l.layerWeights
}
type jsonConfigLDiscretization struct {
ClassName string `json:"class_name"`
Name string `json:"name"`
Config map[string]interface{} `json:"config"`
InboundNodes [][][]interface{} `json:"inbound_nodes"`
}
func (l *LDiscretization) GetKerasLayerConfig() interface{} {
inboundNodes := [][][]interface{}{
{},
}
for _, input := range l.inputs {
inboundNodes[0] = append(inboundNodes[0], []interface{}{
input.GetName(),
0,
0,
map[string]bool{},
})
}
return jsonConfigLDiscretization{
ClassName: "Discretization",
Name: l.name,
Config: map[string]interface{}{
"bin_boundaries": l.binBoundaries,
"dtype": l.dtype.String(),
"epsilon": l.epsilon,
"name": l.name,
"num_bins": l.numBins,
"trainable": l.trainable,
},
InboundNodes: inboundNodes,
}
}
func (l *LDiscretization) GetCustomLayerDefinition() string {
return ``
}