-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMultiHeadAttention.go
executable file
·234 lines (202 loc) · 6.81 KB
/
MultiHeadAttention.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
package layer
import "github.com/codingbeard/tfkg/layer/constraint"
import "github.com/codingbeard/tfkg/layer/initializer"
import "github.com/codingbeard/tfkg/layer/regularizer"
import tf "github.com/galeone/tensorflow/tensorflow/go"
type LMultiHeadAttention struct {
activityRegularizer regularizer.Regularizer
attentionAxes interface{}
biasConstraint constraint.Constraint
biasInitializer initializer.Initializer
biasRegularizer regularizer.Regularizer
dropout float64
dtype DataType
inputs []Layer
kernelConstraint constraint.Constraint
kernelInitializer initializer.Initializer
kernelRegularizer regularizer.Regularizer
keyDim float64
keyShape interface{}
name string
numHeads float64
outputShape interface{}
queryShape interface{}
shape tf.Shape
trainable bool
useBias bool
valueDim interface{}
valueShape interface{}
layerWeights []*tf.Tensor
}
func MultiHeadAttention(keyDim float64, numHeads float64) *LMultiHeadAttention {
return &LMultiHeadAttention{
activityRegularizer: ®ularizer.NilRegularizer{},
attentionAxes: nil,
biasConstraint: &constraint.NilConstraint{},
biasInitializer: initializer.Zeros(),
biasRegularizer: ®ularizer.NilRegularizer{},
dropout: 0,
dtype: Float32,
kernelConstraint: &constraint.NilConstraint{},
kernelInitializer: initializer.GlorotUniform(),
kernelRegularizer: ®ularizer.NilRegularizer{},
keyDim: keyDim,
keyShape: nil,
name: UniqueName("multi_head_attention"),
numHeads: numHeads,
outputShape: nil,
queryShape: nil,
trainable: true,
useBias: true,
valueDim: nil,
valueShape: nil,
}
}
func (l *LMultiHeadAttention) SetActivityRegularizer(activityRegularizer regularizer.Regularizer) *LMultiHeadAttention {
l.activityRegularizer = activityRegularizer
return l
}
func (l *LMultiHeadAttention) SetAttentionAxes(attentionAxes interface{}) *LMultiHeadAttention {
l.attentionAxes = attentionAxes
return l
}
func (l *LMultiHeadAttention) SetBiasConstraint(biasConstraint constraint.Constraint) *LMultiHeadAttention {
l.biasConstraint = biasConstraint
return l
}
func (l *LMultiHeadAttention) SetBiasInitializer(biasInitializer initializer.Initializer) *LMultiHeadAttention {
l.biasInitializer = biasInitializer
return l
}
func (l *LMultiHeadAttention) SetBiasRegularizer(biasRegularizer regularizer.Regularizer) *LMultiHeadAttention {
l.biasRegularizer = biasRegularizer
return l
}
func (l *LMultiHeadAttention) SetDropout(dropout float64) *LMultiHeadAttention {
l.dropout = dropout
return l
}
func (l *LMultiHeadAttention) SetDtype(dtype DataType) *LMultiHeadAttention {
l.dtype = dtype
return l
}
func (l *LMultiHeadAttention) SetKernelConstraint(kernelConstraint constraint.Constraint) *LMultiHeadAttention {
l.kernelConstraint = kernelConstraint
return l
}
func (l *LMultiHeadAttention) SetKernelInitializer(kernelInitializer initializer.Initializer) *LMultiHeadAttention {
l.kernelInitializer = kernelInitializer
return l
}
func (l *LMultiHeadAttention) SetKernelRegularizer(kernelRegularizer regularizer.Regularizer) *LMultiHeadAttention {
l.kernelRegularizer = kernelRegularizer
return l
}
func (l *LMultiHeadAttention) SetKeyShape(keyShape interface{}) *LMultiHeadAttention {
l.keyShape = keyShape
return l
}
func (l *LMultiHeadAttention) SetName(name string) *LMultiHeadAttention {
l.name = name
return l
}
func (l *LMultiHeadAttention) SetOutputShape(outputShape interface{}) *LMultiHeadAttention {
l.outputShape = outputShape
return l
}
func (l *LMultiHeadAttention) SetQueryShape(queryShape interface{}) *LMultiHeadAttention {
l.queryShape = queryShape
return l
}
func (l *LMultiHeadAttention) SetShape(shape tf.Shape) *LMultiHeadAttention {
l.shape = shape
return l
}
func (l *LMultiHeadAttention) SetTrainable(trainable bool) *LMultiHeadAttention {
l.trainable = trainable
return l
}
func (l *LMultiHeadAttention) SetUseBias(useBias bool) *LMultiHeadAttention {
l.useBias = useBias
return l
}
func (l *LMultiHeadAttention) SetValueDim(valueDim interface{}) *LMultiHeadAttention {
l.valueDim = valueDim
return l
}
func (l *LMultiHeadAttention) SetValueShape(valueShape interface{}) *LMultiHeadAttention {
l.valueShape = valueShape
return l
}
func (l *LMultiHeadAttention) SetLayerWeights(layerWeights []*tf.Tensor) *LMultiHeadAttention {
l.layerWeights = layerWeights
return l
}
func (l *LMultiHeadAttention) GetShape() tf.Shape {
return l.shape
}
func (l *LMultiHeadAttention) GetDtype() DataType {
return l.dtype
}
func (l *LMultiHeadAttention) SetInputs(inputs ...Layer) Layer {
l.inputs = inputs
return l
}
func (l *LMultiHeadAttention) GetInputs() []Layer {
return l.inputs
}
func (l *LMultiHeadAttention) GetName() string {
return l.name
}
func (l *LMultiHeadAttention) GetLayerWeights() []*tf.Tensor {
return l.layerWeights
}
type jsonConfigLMultiHeadAttention struct {
ClassName string `json:"class_name"`
Name string `json:"name"`
Config map[string]interface{} `json:"config"`
InboundNodes [][][]interface{} `json:"inbound_nodes"`
}
func (l *LMultiHeadAttention) GetKerasLayerConfig() interface{} {
inboundNodes := [][][]interface{}{
{},
}
for _, input := range l.inputs {
inboundNodes[0] = append(inboundNodes[0], []interface{}{
input.GetName(),
0,
0,
map[string]bool{},
})
}
return jsonConfigLMultiHeadAttention{
ClassName: "MultiHeadAttention",
Name: l.name,
Config: map[string]interface{}{
"activity_regularizer": l.activityRegularizer.GetKerasLayerConfig(),
"attention_axes": l.attentionAxes,
"bias_constraint": l.biasConstraint.GetKerasLayerConfig(),
"bias_initializer": l.biasInitializer.GetKerasLayerConfig(),
"bias_regularizer": l.biasRegularizer.GetKerasLayerConfig(),
"dropout": l.dropout,
"dtype": l.dtype.String(),
"kernel_constraint": l.kernelConstraint.GetKerasLayerConfig(),
"kernel_initializer": l.kernelInitializer.GetKerasLayerConfig(),
"kernel_regularizer": l.kernelRegularizer.GetKerasLayerConfig(),
"key_dim": l.keyDim,
"key_shape": l.keyShape,
"name": l.name,
"num_heads": l.numHeads,
"output_shape": l.outputShape,
"query_shape": l.queryShape,
"trainable": l.trainable,
"use_bias": l.useBias,
"value_dim": l.valueDim,
"value_shape": l.valueShape,
},
InboundNodes: inboundNodes,
}
}
func (l *LMultiHeadAttention) GetCustomLayerDefinition() string {
return ``
}