-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtest_CUB200.py
44 lines (34 loc) · 1.41 KB
/
test_CUB200.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
import pytest
from torchvision.transforms import Resize, ToTensor
from torch.utils.data import DataLoader
from continuum.datasets import CUB200
from continuum.scenarios import ClassIncremental
DATA_PATH = os.environ.get("CONTINUUM_DATA_PATH")
'''
Test the visualization with instance_class scenario
'''
@pytest.mark.slow
def test_scenario_CUB200_ClassIncremental():
dataset = CUB200(DATA_PATH, train=True)
scenario = ClassIncremental(dataset, increment=100, transformations=[Resize((224, 224)), ToTensor()])
print(f"Nb classes : {scenario.nb_classes} ")
print(f"Nb tasks : {scenario.nb_tasks} ")
for task_id, task_set in enumerate(scenario):
print(f"Task {task_id} : {task_set.nb_classes} classes")
task_set.plot(path="Archives/Samples/CUB200/CI",
title="CUB200_ClassIncremental_{}.jpg".format(task_id),
nb_samples=100)
@pytest.mark.slow
def test_train_test_CUB200():
dataset_tr = CUB200(DATA_PATH, train=True)
dataset_te = CUB200(DATA_PATH, train=False)
scenario_tr = ClassIncremental(dataset_tr, nb_tasks=1)
scenario_te = ClassIncremental(dataset_te, nb_tasks=1)
assert len(scenario_tr[0]) != len(scenario_te[0])
for taskset in scenario_tr:
loader = DataLoader(taskset)
_, _, _ = next(iter(loader))
for taskset in scenario_te:
loader = DataLoader(taskset)
_, _, _ = next(iter(loader))