-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtest_ctrl.py
59 lines (50 loc) · 2.25 KB
/
test_ctrl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import pytest
import numpy as np
from continuum import ContinualScenario
from continuum.datasets import CTRLplus, CTRLminus, CTRLout, CTRLin, CTRLplastic
DATA_PATH = os.environ.get("CONTINUUM_DATA_PATH")
@pytest.mark.slow
@pytest.mark.parametrize("dataset,nb_tasks,classes_per_task,qt_train,qt_val", [
(CTRLminus, 6, [
list(range(10)), list(range(10, 20)), list(range(20, 67)),
list(range(67, 77)), list(range(77, 87)), list(range(10))],
[4000, 400, 376, 400, 400, 400],
[2000, 200, 188, 200, 200, 200]
),
(CTRLplus, 6, [
list(range(10)), list(range(10, 20)), list(range(20, 67)),
list(range(67, 77)), list(range(77, 87)), list(range(10))],
[400, 400, 376, 400, 400, 4000],
[200, 200, 188, 200, 200, 2000]
),
(CTRLin, 6, [
list(range(10)), list(range(10, 20)), list(range(20, 67)),
list(range(67, 77)), list(range(77, 87)), list(range(10))],
[4000, 400, 376, 400, 400, 50],
[2000, 200, 188, 200, 200, 30]
),
(CTRLout, 6, [
list(range(10)), list(range(10, 20)), list(range(20, 67)),
list(range(67, 77)), list(range(77, 87)), list(range(87, 97))],
[4000, 400, 376, 400, 400, 400],
[2000, 200, 188, 200, 200, 200]
),
(CTRLplastic, 5, [
list(range(10)), list(range(10, 57)),
list(range(57, 67)), list(range(67, 77)), list(range(77, 87))],
[400, 376, 400, 400, 4000],
[200, 188, 200, 200, 2000]
),
])
def test_ctrl(tmpdir, dataset, nb_tasks, classes_per_task, qt_train, qt_val):
path = DATA_PATH or tmpdir # Use env variable else pytest default temp dir
s_train = ContinualScenario(dataset(path, split="train", download=True))
s_val = ContinualScenario(dataset(path, split="val", download=True))
s_test = ContinualScenario(dataset(path, split="test", download=True))
assert len(s_train) == len(s_val) == len(s_test) == nb_tasks
for i, (tr_set, va_set, te_set) in enumerate(zip(s_train, s_val, s_test)):
assert np.unique(tr_set._y).tolist() == np.unique(va_set._y).tolist() == np.unique(te_set._y).tolist()
assert np.unique(tr_set._y).tolist() == classes_per_task[i], i
assert len(tr_set) == qt_train[i]
assert len(va_set) == qt_val[i]