-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtest_generators.py
159 lines (124 loc) · 5.48 KB
/
test_generators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import pytest
import torch
import random
import string
from continuum.datasets import InMemoryDataset
from continuum.scenarios import ClassIncremental
from continuum.generators import TaskOrderGenerator, ClassOrderGenerator, HashGenerator
def gen_data():
x_train = np.random.randint(0, 255, size=(20, 32, 32, 3))
y_train = []
for i in range(10):
y_train.append(np.ones(2) * i)
y_train = np.concatenate(y_train)
x_test = np.random.randint(0, 255, size=(20, 32, 32, 3))
y_test = np.copy(y_train)
return (x_train, y_train), (x_test, y_test)
def test_task_order_generator():
train, test = gen_data()
dummy = InMemoryDataset(*train)
scenario = ClassIncremental(dummy, increment=1)
scenario_generator = TaskOrderGenerator(scenario)
sample_scenario = scenario_generator.sample()
assert sample_scenario.nb_tasks == scenario.nb_tasks
def test_class_order_generator():
train, test = gen_data()
dummy = InMemoryDataset(*train)
scenario = ClassIncremental(dummy, increment=1)
scenario_generator = ClassOrderGenerator(scenario)
sample_scenario = scenario_generator.sample()
assert sample_scenario.nb_tasks == scenario.nb_tasks
assert sample_scenario.nb_classes == scenario.nb_classes
assert (sample_scenario.classes == scenario.classes).all()
@pytest.mark.parametrize("seed",
[0, 41, 1992]
)
def test_class_order_generator(seed):
train, test = gen_data()
dummy = InMemoryDataset(*train)
scenario = ClassIncremental(dummy, increment=1)
scenario_generator = ClassOrderGenerator(scenario)
sample_scenario = scenario_generator.sample(seed)
class_order = scenario_generator.get_class_order(seed)
assert (np.array(class_order) == np.array(sample_scenario.class_order)).all()
@pytest.mark.parametrize("seeds", [
[0, 1],
[1664, 41],
[1792, 1992]
])
def test_task_order_generator_seed(seeds):
train, test = gen_data()
seed_0 = seeds[0]
seed_1 = seeds[1]
dummy = InMemoryDataset(*train)
scenario = ClassIncremental(dummy, increment=1)
scenario_generator = TaskOrderGenerator(scenario)
task_order_0 = scenario_generator.get_task_order(seed=seed_0)
task_order_1 = scenario_generator.get_task_order(seed=seed_1)
task_order_0_2 = scenario_generator.get_task_order(seed=seed_0)
assert not torch.all(task_order_0.eq(task_order_1))
assert torch.all(task_order_0.eq(task_order_0_2))
@pytest.mark.parametrize("nb_tasks", [
2,
4
])
def test_task_order_generator_nb_tasks(nb_tasks):
train, test = gen_data()
dummy = InMemoryDataset(*train)
scenario = ClassIncremental(dummy, increment=1)
scenario_generator = TaskOrderGenerator(scenario)
sample_scenario = scenario_generator.sample(nb_tasks=nb_tasks)
assert sample_scenario.nb_tasks == nb_tasks
def test_hash_generator_auto():
train, test = gen_data()
dummy = InMemoryDataset(*train)
NB_TASKS = 2
list_hash = ["AverageHash", "Phash", "PhashSimple", "DhashH", "DhashV", "Whash", "ColorHash"
] # , "CropResistantHash"
scenario_generator = HashGenerator(cl_dataset=dummy,
list_hash=list_hash,
nb_tasks=2,
transformations=None,
filename_hash_indexes=None,
split_task="auto")
sample_scenario = scenario_generator.sample()
assert sample_scenario.nb_tasks == NB_TASKS
def test_hash_generator_auto_full():
train, test = gen_data()
dummy = InMemoryDataset(*train)
list_hash = ["AverageHash", "Phash", "PhashSimple", "DhashH", "DhashV", "Whash", "ColorHash"
] # , "CropResistantHash"
scenario_generator = HashGenerator(cl_dataset=dummy,
list_hash=list_hash,
nb_tasks=None,
transformations=None,
filename_hash_indexes=None,
split_task="auto")
sample_scenario = scenario_generator.sample()
assert sample_scenario.nb_tasks >= 2
sample_scenario = scenario_generator.sample()
assert sample_scenario.nb_tasks >= 2
@pytest.mark.parametrize("nb_tasks, list_hash_name", [
(2, ["AverageHash", "Whash", "ColorHash", "DhashV"]), #"CropResistantHash"
(4, ["DhashH", "DhashV", "Whash", "ColorHash"]),
(3, ["AverageHash", "DhashH"]),
(5, ["AverageHash", "Phash", "PhashSimple", "DhashH", "DhashV", "Whash", "ColorHash",
]) #"CropResistantHash"
])
def test_hash_generator_balanced(nb_tasks, list_hash_name):
train, test = gen_data()
dummy = InMemoryDataset(*train)
print(list_hash_name)
scenario_generator = HashGenerator(cl_dataset=dummy,
list_hash=list_hash_name,
nb_tasks=nb_tasks,
transformations=None,
filename_hash_indexes=None,
split_task="balanced")
sample_scenario = scenario_generator.sample()
assert sample_scenario.split_task == "balanced"
assert sample_scenario.hash_name in list_hash_name
# test nb of samples per task
assert (len(sample_scenario[0]) == len(sample_scenario[1]))\
or (len(sample_scenario[0]) + 1 == len(sample_scenario[1]))