-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtest_imagenet.py
63 lines (40 loc) · 1.62 KB
/
test_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import pytest
from continuum.datasets import ImageNet100
from continuum.scenarios import ClassIncremental
nb_images_per_subset = {
True: 129395, # train
False: 5000 # test
}
@pytest.fixture
def ImageNet100Test(tmpdir):
folder = os.path.join(tmpdir, "imagenet100test")
os.makedirs(folder)
return ImageNet100(folder, data_subset=None, download=True, train=False)
@pytest.fixture
def ImageNet100Train(tmpdir):
folder = os.path.join(tmpdir, "imagenet100train")
os.makedirs(folder)
return ImageNet100(folder, data_subset=None, download=True, train=True)
@pytest.mark.parametrize("train", [True, False])
def test_parsing_imagenet100(ImageNet100Train, ImageNet100Test, train):
dataset = ImageNet100Train if train else ImageNet100Test
x, y, t = dataset.get_data()
assert all("train" if train else "test" in path for path in x)
@pytest.mark.parametrize("train", [True, False])
def test_nb_imagenet100(ImageNet100Train, ImageNet100Test, train):
dataset = ImageNet100Train if train else ImageNet100Test
x, y, t = dataset.get_data()
assert len(x) == nb_images_per_subset[train]
@pytest.mark.parametrize("train,div", [
(True, 1), (True, 2),
(False, 1), (True, 2)
])
def test_customsubset_imagenet100(ImageNet100Train, ImageNet100Test, train, div):
dataset = ImageNet100Train if train else ImageNet100Test
x, y, t = dataset.get_data()
new_x = x[:len(x) // div]
new_y = y[:len(y) // div]
subset = ImageNet100(dataset.data_path, data_subset=(new_x, new_y), download=False, train=train)
x2, y2, t2 = subset.get_data()
assert len(x) // div == len(x2)