-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtest_stream_51.py
58 lines (44 loc) · 2 KB
/
test_stream_51.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import pytest
import numpy as np
from torchvision.transforms import Resize, ToTensor
from continuum.datasets import Stream51
from continuum.scenarios import InstanceIncremental
from continuum.scenarios import ClassIncremental
DATA_PATH = os.environ.get("CONTINUUM_DATA_PATH")
'''
Test the visualization with instance_class scenario
'''
@pytest.mark.slow
def test_scenario_clip_ClassIncremental():
folder = "tests/samples/stream51/class_incremental/"
if not os.path.exists(folder):
os.makedirs(folder)
dataset = Stream51(DATA_PATH, task_criterion="clip")
# dataset = Stream51('../Datasets', task_criterion="video")
# scenario = InstanceIncremental(dataset, transformations=[Resize((224, 224)), ToTensor()])
scenario = ClassIncremental(dataset, increment=1, transformations=[Resize((224, 224)), ToTensor()])
print(f"Nb classes : {scenario.nb_classes} ")
print(f"Nb tasks : {scenario.nb_tasks} ")
for task_id, task_set in enumerate(scenario):
print(f"Task {task_id} : {task_set.nb_classes} classes")
task_set.plot(path=folder,
title="Stream51_InstanceIncremental_{}.jpg".format(task_id),
nb_samples=100)
'''
Test the visualization with instance scenario
'''
@pytest.mark.slow
def test_scenario_clip_InstanceIncremental():
folder = "tests/samples/stream51/class_incremental/"
if not os.path.exists(folder):
os.makedirs(folder)
dataset = Stream51(DATA_PATH, task_criterion="clip")
scenario = InstanceIncremental(dataset, transformations=[Resize((224, 224)), ToTensor()])
print(f"Nb classes : {scenario.nb_classes} ")
print(f"Nb tasks : {scenario.nb_tasks} ")
for task_id, task_set in enumerate(scenario):
print(f"Task {task_id} : {task_set.nb_classes} classes")
task_set.plot(path=folder,
title="Stream51_InstanceIncremental_{}.jpg".format(task_id),
nb_samples=100)