forked from InternLM/lmdeploy
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprofile_generation.py
463 lines (406 loc) · 18.9 KB
/
profile_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import asyncio
import csv
import os
import time
from dataclasses import dataclass
from typing import List, Union
import numpy as np
from pynvml import (NVMLError, nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo,
nvmlDeviceGetName, nvmlDeviceGetPowerState, nvmlDeviceGetTemperature, nvmlInit, nvmlShutdown,
nvmlSystemGetDriverVersion)
from tqdm import tqdm
from lmdeploy.cli.utils import ArgumentHelper, DefaultsAndTypesHelpFormatter
from lmdeploy.messages import GenerationConfig, PytorchEngineConfig, TurbomindEngineConfig
from lmdeploy.tokenizer import Tokenizer
from lmdeploy.utils import get_logger
get_logger('lmdeploy').setLevel('WARNING')
os.environ['TM_LOG_LEVEL'] = 'ERROR'
async def infer(model, session_id: int, input_ids: List, gen_config: GenerationConfig, test_round: int,
que: asyncio.Queue):
if session_id == 1:
pbar = tqdm(total=test_round)
chatbot = model.create_instance()
output_seqlen = gen_config.max_new_tokens
stats = []
for _ in range(test_round):
token_latency_stats = [0] * (output_seqlen + 1)
prev = time.perf_counter()
n_prev_token = 0
"""
The iterator provided by `stream_infer` denotes the number of generated tokens so far,
which is represented by the variable `n_token`.
Please note that `n_token` is not a continuous value. In other words, during the iteration,
its value might be 5, 7, 8, 16, and so on, rather than 1, 2, 3, 4, etc.
So, it is quite difficult to get the latency of each generated token.
As a work-around, we set the latency `now-prev` of each iteration to the first token of
the new generated tokens, and leave the latency of the rest tokens being 0.
For example, in the first iteration, 5 tokens are generated.
The time elapsing in this iteration `now-prev` is set to the latency of first token of
the 5 tokens, i.e. `token_latency_stats[0]`, and `token_latency_stats[1:4]` is set 0`
""" # noqa: E501
async for outputs in chatbot.async_stream_infer(session_id,
input_ids,
gen_config=gen_config,
sequence_start=True,
sequence_end=True,
stream_output=True):
n_token = outputs.num_token
now = time.perf_counter()
if n_prev_token != n_token:
token_latency_stats[n_prev_token] = np.round(now - prev, 3)
n_prev_token = n_token
prev = now
# for pytorch engine to restart a session
if hasattr(chatbot, 'end'):
await chatbot.async_end(session_id)
if session_id == 1:
pbar.update(1)
assert output_seqlen <= n_token <= output_seqlen + 1, \
f'Error. session_id({session_id}) request {output_seqlen} ' \
f'tokens, but generate {n_token} tokens'
stats.append(token_latency_stats[:output_seqlen])
await que.put((session_id, stats))
def warmup(model, concurrency: int, input_ids: List[int], warmup_round: int, gen_config: GenerationConfig,
event_loop: asyncio.BaseEventLoop):
if not warmup_round:
return
print('start to warmup ...')
async def _infer(model, session_id):
chatbot = model.create_instance()
for _ in range(warmup_round):
async for _ in chatbot.async_stream_infer(session_id,
input_ids=input_ids,
sequence_start=True,
sequence_end=True,
ignore_eos=True,
gen_config=gen_config):
continue
# for pytorch engine to restart a session
if hasattr(chatbot, 'end'):
await chatbot.async_end(session_id)
_start = time.perf_counter()
# start threads
tasks = []
for i in range(concurrency):
task = _infer(model, i + 1)
tasks.append(task)
async def _gather_tasks(tasks):
return await asyncio.gather(*tasks)
event_loop.run_until_complete(_gather_tasks(tasks))
_end = time.perf_counter()
print(f'end warmup, elapsed time: {round(_end - _start, 2)}s')
def profile_throughput(model_path: str, concurrency: int, input_seqlen: int,
engine_config: Union[PytorchEngineConfig, TurbomindEngineConfig], gen_config: GenerationConfig,
test_round: int, warmup_round: int):
output_seqlen = gen_config.max_new_tokens
print(f'profiling ... concurrency: {concurrency}, '
f'n_prompt_token: {input_seqlen}, '
f'n_completion_token: {output_seqlen}, '
f'test_round: {test_round}, warmup_round: {warmup_round}')
tokenizer = Tokenizer(model_path)
if isinstance(engine_config, TurbomindEngineConfig):
from lmdeploy.turbomind import TurboMind
tm_model = TurboMind.from_pretrained(model_path, tokenizer=tokenizer, engine_config=engine_config)
elif isinstance(engine_config, PytorchEngineConfig):
from lmdeploy.pytorch.engine import Engine
tm_model = Engine(model_path, tokenizer=tokenizer, engine_config=engine_config)
event_loop = asyncio.new_event_loop()
asyncio.set_event_loop(event_loop)
# make up a dummy `input_ids` with the length of `input_seqlen` exactly
assert input_seqlen > 0, 'input_seqlen should > 0'
input_ids = np.random.randint(low=0, high=101, size=input_seqlen).tolist()
warmup(tm_model, concurrency, input_ids, warmup_round, gen_config, event_loop)
que = asyncio.Queue()
_start = time.perf_counter()
tasks = []
for i in range(concurrency):
task = infer(tm_model, i + 1, input_ids, gen_config, test_round, que)
tasks.append(task)
async def _gather_tasks(tasks):
return await asyncio.gather(*tasks)
event_loop.run_until_complete(_gather_tasks(tasks))
_end = time.perf_counter()
elapsed_time = _end - _start
tm_model.close()
token_latency_stats = []
while not que.empty():
_, _stats = que.get_nowait()
token_latency_stats += _stats
# The shape is [concurrency*test_round, output_seqlen]
token_latency_stats = np.stack(token_latency_stats, axis=0)
first_token_latency_min = np.round(np.min(token_latency_stats[:, 0], axis=0), 3)
first_token_latency_max = np.round(np.max(token_latency_stats[:, 0], axis=0), 3)
first_token_latency_ave = np.round(np.mean(token_latency_stats[:, 0], axis=0), 3)
token_latency_max = np.round(np.max(np.sum(token_latency_stats, axis=1)), 3)
token_latency_min = np.round(np.min(np.sum(token_latency_stats, axis=1)), 3)
token_latency_ave = np.round(np.mean(np.sum(token_latency_stats, axis=1)), 3)
if output_seqlen > 1:
# sort token_latency without the first token's latency
sorted_token_latency = np.sort(token_latency_stats[:, 1:].flatten())
percentiles = [
np.round(sorted_token_latency[int(percent * len(sorted_token_latency))], 3)
for percent in [0.5, 0.75, 0.95, 0.99]
]
else:
percentiles = [
first_token_latency_ave,
] * 4
out_token_throughput = np.round(token_latency_stats.size / elapsed_time, 2)
total_token_throughput = np.round(concurrency * test_round * (input_seqlen + output_seqlen) / elapsed_time, 2)
print(f'\n{"-" * 50}\ntotal time: {elapsed_time:.2f}s\n'
f'concurrency: {concurrency}, test_round: {test_round}\n'
f'input_tokens: {input_seqlen}, output_tokens: {output_seqlen}\n'
f'first_token latency(min, max, ave): '
f'{first_token_latency_min}s, {first_token_latency_max}s, '
f'{first_token_latency_ave}s\ntotal_token latency(min, max, ave): '
f'{token_latency_min}s, {token_latency_max}s, '
f'{token_latency_ave}s\n'
f'token_latency percentiles(50%,75%,95%,99%)(s): {percentiles}\n'
f'throughput(output): {out_token_throughput} token/s\n'
f'throughput(total): {total_token_throughput} token/s\n{"-" * 50}')
return model_path, \
[first_token_latency_min, first_token_latency_max,
first_token_latency_ave], \
percentiles, out_token_throughput, total_token_throughput, \
tm_model.gpu_count
class MemoryMonitor:
@classmethod
def init(cls):
from multiprocessing import Manager
cls.max_mem = Manager().Value('f', 0) # GB
cls.device_count = Manager().Value('f', 0)
@staticmethod
def nvidia_info():
# pip install nvidia-ml-py
nvidia_dict = {'state': True, 'nvidia_version': '', 'nvidia_count': 0, 'gpus': []}
try:
nvmlInit()
nvidia_dict['nvidia_version'] = nvmlSystemGetDriverVersion()
nvidia_dict['nvidia_count'] = nvmlDeviceGetCount()
for i in range(nvidia_dict['nvidia_count']):
handle = nvmlDeviceGetHandleByIndex(i)
memory_info = nvmlDeviceGetMemoryInfo(handle)
gpu = {
'gpu_name': nvmlDeviceGetName(handle),
'total': memory_info.total,
'free': memory_info.free,
'used': memory_info.used,
'temperature': f'{nvmlDeviceGetTemperature(handle, 0)}℃',
'powerStatus': nvmlDeviceGetPowerState(handle)
}
nvidia_dict['gpus'].append(gpu)
except NVMLError as _: # noqa
nvidia_dict['state'] = False
except Exception as _: # noqa
nvidia_dict['state'] = False
finally:
try:
nvmlShutdown()
except: # noqa
pass
return nvidia_dict
@classmethod
def mem_monitor(cls):
info = cls.nvidia_info()
max_mem = 0
mem_start = 0
cls.device_count.value = len(info['gpus'])
for used_total in info['gpus']:
mem_start += used_total['used']
while True:
info = cls.nvidia_info()
used = 0
for used_total in info['gpus']:
used += used_total['used']
if used > max_mem:
max_mem = used
cls.max_mem.value = (max_mem - mem_start) / (1 << 30)
@classmethod
def start(cls):
cls._running = True
from multiprocessing import Process
cls.proc = Process(target=cls.mem_monitor, daemon=True)
cls.proc.start()
@classmethod
def terminate(cls) -> float:
"""Terminate the subprocess and return maximum memory."""
cls.proc.kill()
return cls.max_mem.value
@dataclass
class ProfileResult:
model_name: str
batch: int
prompt_tokens: int
completion_tokens: int
first_token_latency: List
percentiles: List
output_throughput: float
total_throughput: float
mem_per_gpu: float
def parse_args():
parser = argparse.ArgumentParser(description='Profile the token generation performance with'
' pytorch or turbomind engine',
formatter_class=DefaultsAndTypesHelpFormatter)
parser.add_argument('model_path',
type=str,
help='the path of the model in localhost or '
'the repo_id of the model in huggingface.co')
parser.add_argument('-c',
'--concurrency',
nargs='+',
type=int,
help='how many requests launched concurrently',
default=[1, 16, 32, 64])
parser.add_argument('-pt',
'--prompt-tokens',
nargs='+',
type=int,
help='how many tokens in the prompt. One-to-one '
'correspondence with completion-tokens',
default=[1, 128, 128, 2048, 2048])
parser.add_argument('-ct',
'--completion-tokens',
nargs='+',
type=int,
help='how many tokens to be generated. One-to-one '
'correspondence with prompt-tokens',
default=[128, 128, 2048, 128, 2048])
parser.add_argument('--csv', type=str, help='Where to save the result.', default='profile_generation.csv')
parser.add_argument('-tr', '--test-round', type=int, help='number of test rounds', default=3)
parser.add_argument('-w', '--warmup-round', type=int, help='number of warmup rounds', default=1)
# other args
ArgumentHelper.top_p(parser)
ArgumentHelper.temperature(parser)
ArgumentHelper.top_k(parser)
ArgumentHelper.backend(parser)
# pytorch engine args
pt_group = parser.add_argument_group('PyTorch engine arguments')
ArgumentHelper.eager_mode(pt_group)
tp_act = ArgumentHelper.tp(pt_group)
cache_count_act = ArgumentHelper.cache_max_entry_count(pt_group)
cache_block_seq_len_act = ArgumentHelper.cache_block_seq_len(pt_group)
session_len_act = ArgumentHelper.session_len(pt_group, default=2048)
prefix_caching_act = ArgumentHelper.enable_prefix_caching(pt_group)
rope_scaling_factor_act = ArgumentHelper.rope_scaling_factor(pt_group)
dtype_act = ArgumentHelper.dtype(pt_group)
# turbomind engine args
tb_group = parser.add_argument_group('TurboMind engine argument')
tb_group._group_actions.append(tp_act)
tb_group._group_actions.append(session_len_act)
tb_group._group_actions.append(cache_count_act)
tb_group._group_actions.append(cache_block_seq_len_act)
tb_group._group_actions.append(prefix_caching_act)
tb_group._group_actions.append(rope_scaling_factor_act)
tb_group._group_actions.append(dtype_act)
ArgumentHelper.model_format(tb_group, default='hf')
args = parser.parse_args()
return args
def __proc_cb(*args, ret_pipe, target):
try:
ret = target(*args)
ret_pipe[1].send(ret)
except Exception as e:
ret_pipe[1].send(e)
def _process_map(target, iterable):
from multiprocessing import Pipe, get_context
pipe = Pipe(False)
spawn_context = get_context('spawn')
proc = spawn_context.Process(target=__proc_cb, args=iterable, kwargs=dict(ret_pipe=pipe, target=target))
proc.start()
proc.join()
ret = pipe[0].recv()
if isinstance(ret, Exception):
raise ret
return ret
def main():
args = parse_args()
assert len(args.prompt_tokens) == len(args.completion_tokens), \
f'mismatched size between `prompt-tokens` and `completion-tokenes`' \
f', {len(args.prompt_tokens)} vs {len(args.completion_tokens)}'
results: List[ProfileResult] = []
MemoryMonitor.init()
for batch in args.concurrency:
for prompt_tokens, completion_tokens in zip(args.prompt_tokens, args.completion_tokens):
MemoryMonitor.start()
from functools import partial
# make sure session_len >= prompt_tokens + completion_tokens
session_len = max(args.session_len, prompt_tokens + completion_tokens)
if args.backend == 'turbomind':
engine_config = TurbomindEngineConfig(
cache_max_entry_count=args.cache_max_entry_count,
cache_block_seq_len=args.cache_block_seq_len,
model_format=args.model_format,
session_len=session_len,
rope_scaling_factor=args.rope_scaling_factor,
tp=args.tp,
enable_prefix_caching=args.enable_prefix_caching,
dtype=args.dtype,
)
elif args.backend == 'pytorch':
engine_config = PytorchEngineConfig(
cache_max_entry_count=args.cache_max_entry_count,
block_size=args.cache_block_seq_len,
session_len=session_len,
tp=args.tp,
eager_mode=args.eager_mode,
enable_prefix_caching=args.enable_prefix_caching,
dtype=args.dtype,
)
gen_config = GenerationConfig(top_k=args.top_k,
top_p=args.top_p,
temperature=args.temperature,
max_new_tokens=completion_tokens,
ignore_eos=True)
profile_target = partial(
profile_throughput,
concurrency=batch,
input_seqlen=prompt_tokens,
engine_config=engine_config,
gen_config=gen_config,
test_round=args.test_round,
warmup_round=args.warmup_round,
)
output = _process_map(profile_target, (args.model_path, ))
model_name, first_token_latency, percentiles, \
output_throughput, total_throughput, tp = output
time.sleep(5) # wait a while for releasing GPU mem
memory = MemoryMonitor.terminate()
results.append(
ProfileResult(model_name=model_name,
batch=batch,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
first_token_latency=first_token_latency,
percentiles=percentiles,
output_throughput=output_throughput,
total_throughput=total_throughput,
mem_per_gpu=memory / tp))
if args.csv:
with open(args.csv, 'w') as csvfile:
writer = csv.writer(csvfile)
writer.writerow([
'batch',
'prompt_tokens',
'completion_tokens',
'throughput(total tok/s)',
'throughput(out tok/s)',
'mem(GB)',
'FTL(ave)(s)',
'FTL(min)(s)',
'FTL(max)(s)',
'50%(s)',
'75%(s)',
'95%(s)',
'99%(s)',
])
for re in results:
writer.writerow([
re.batch, re.prompt_tokens, re.completion_tokens, f'{re.total_throughput:.2f}',
f'{re.output_throughput:.2f}', f'{re.mem_per_gpu:.2f}', re.first_token_latency[2],
re.first_token_latency[0], re.first_token_latency[1], re.percentiles[0], re.percentiles[1],
re.percentiles[2], re.percentiles[3]
])
if __name__ == '__main__':
main()