forked from InternLM/lmdeploy
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprofile_restful_api.py
1056 lines (919 loc) · 39.1 KB
/
profile_restful_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Modify from https://github.com/sgl-project/sglang/blob/main/python/sglang/bench_serving.py # noqa
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/backend_request_func.py # noqa
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/benchmark_serving.py # noqa
"""Benchmark online serving with dynamic requests.
Usage:
python3 -m sglang.bench_serving --backend sglang --num-prompt 10
python3 -m sglang.bench_serving --backend sglang --dataset-name random --num-prompts 3000 --random-input 1024 --random-output 1024 --random-range-ratio 0.5
python3 -m sglang.bench_serving --backend sglang --dataset-name random --request-rate-range 1,2,4,8,16,32 --random-input 4096 --random-output 1024 --random-range-ratio 0.125 --multi
""" # noqa
import argparse
import asyncio
import json
import os
import random
import resource
import sys
import time
import traceback
import warnings
from argparse import ArgumentParser
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union
import aiohttp
import numpy as np
import requests
from tqdm.asyncio import tqdm
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerBase, PreTrainedTokenizerFast
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=None)
_timeout_value = os.getenv('AIOHTTP_TIMEOUT', None)
if _timeout_value is not None:
try:
_timeout_value = int(_timeout_value)
if _timeout_value < 0:
raise ValueError('AIOHTTP_TIMEOUT cannot be negative.')
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=_timeout_value * 60 * 60)
except ValueError as e:
print(f'Invalid AIOHTTP_TIMEOUT: {e}.')
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=None)
global args
@dataclass
class RequestFuncInput:
prompt: str
api_url: str
prompt_len: int
output_len: int
model: str
extra_request_body: Dict[str, Any]
@dataclass
class RequestFuncOutput:
generated_text: str = ''
success: bool = False
latency: float = 0.0
ttft: float = 0.0 # Time to first token
itl: List[float] = field(default_factory=list) # List of inter-token latencies
prompt_len: int = 0
error: str = ''
output_len: int = 0
def remove_prefix(text: str, prefix: str) -> str:
return text[len(prefix):] if text.startswith(prefix) else text
# trt llm not support ignore_eos
# https://github.com/triton-inference-server/tensorrtllm_backend/issues/505
async def async_request_trt_llm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith('generate_stream')
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = {
'accumulate_tokens': True,
'text_input': request_func_input.prompt,
'temperature': 0.000001,
'top_p': 1.0,
'max_tokens': request_func_input.output_len,
'stream': True,
'min_length': request_func_input.output_len,
'end_id': 1048576,
**request_func_input.extra_request_body,
}
if args.disable_ignore_eos:
del payload['min_length']
del payload['end_id']
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode('utf-8'), 'data:')
data = json.loads(chunk)
output.generated_text += data['text_output']
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
output.latency = most_recent_timestamp - st
output.success = True
output.output_len = request_func_input.output_len
else:
output.error = response.reason or ''
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = ''.join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
# set ignore_eos True by default
async def async_request_openai_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith('completions'), "OpenAI Completions API URL must end with 'completions'."
prompt = request_func_input.prompt
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = {
'model': request_func_input.model,
'prompt': prompt,
'temperature': 0.0,
'best_of': 1,
'max_tokens': request_func_input.output_len,
'stream': not args.disable_stream,
'ignore_eos': not args.disable_ignore_eos,
**request_func_input.extra_request_body,
}
headers = {'Authorization': f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ''
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload, headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode('utf-8'), 'data: ')
latency = time.perf_counter() - st
if chunk == '[DONE]':
pass
else:
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if data['choices'][0]['text']:
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += data['choices'][0]['text']
output.generated_text = generated_text
output.success = True
output.latency = latency
output.output_len = request_func_input.output_len
else:
output.error = response.reason or ''
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = ''.join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_sglang_generate(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
prompt = request_func_input.prompt
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = {
'text': prompt,
'sampling_params': {
'temperature': 0.0,
'max_new_tokens': request_func_input.output_len,
'ignore_eos': not args.disable_ignore_eos,
},
'stream': not args.disable_stream,
**request_func_input.extra_request_body,
}
headers = {}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ''
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload, headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
# print(chunk_bytes)
chunk = remove_prefix(chunk_bytes.decode('utf-8'), 'data: ')
latency = time.perf_counter() - st
if chunk == '[DONE]':
pass
else:
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if data['text']:
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text = data['text']
output.generated_text = generated_text
output.success = True
output.latency = latency
output.output_len = request_func_input.output_len
else:
output.error = response.reason or ''
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = ''.join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_gserver(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
raise NotImplementedError()
def get_model(pretrained_model_name_or_path: str) -> str:
if os.getenv('SGLANG_USE_MODELSCOPE', 'False').lower() == 'true':
import huggingface_hub.constants
from modelscope import snapshot_download
model_path = snapshot_download(
model_id=pretrained_model_name_or_path,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
ignore_file_pattern=['.*.pt', '.*.safetensors', '.*.bin'],
)
return model_path
return pretrained_model_name_or_path
def get_tokenizer(pretrained_model_name_or_path: str, ) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
if pretrained_model_name_or_path.endswith('.json') or pretrained_model_name_or_path.endswith('.model'):
from sglang.srt.hf_transformers_utils import get_tokenizer
return get_tokenizer(pretrained_model_name_or_path)
if pretrained_model_name_or_path is not None and not os.path.exists(pretrained_model_name_or_path):
pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
return AutoTokenizer.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
ASYNC_REQUEST_FUNCS = {
'sglang': async_request_sglang_generate,
'sglang-native': async_request_sglang_generate,
'sglang-oai': async_request_openai_completions,
'vllm': async_request_openai_completions,
'lmdeploy': async_request_openai_completions,
'trt': async_request_trt_llm,
'gserver': async_request_gserver,
}
@dataclass
class BenchmarkMetrics:
completed: int
total_input: int
total_output: int
total_output_retokenized: int
request_throughput: float
input_throughput: float
output_throughput: float
output_throughput_retokenized: float
mean_ttft_ms: float
median_ttft_ms: float
std_ttft_ms: float
p99_ttft_ms: float
mean_tpot_ms: float
median_tpot_ms: float
std_tpot_ms: float
p99_tpot_ms: float
mean_itl_ms: float
median_itl_ms: float
std_itl_ms: float
p99_itl_ms: float
mean_e2e_latency_ms: float
median_e2e_latency_ms: float
SHAREGPT_URL = 'https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json' # noqa
def download_and_cache_file(url: str, filename: Optional[str] = None):
"""Read and cache a file from a url."""
if filename is None:
filename = os.path.join('/tmp', url.split('/')[-1])
# Check if the cache file already exists
if os.path.exists(filename):
return filename
print(f'Downloading from {url} to {filename}')
# Stream the response to show the progress bar
response = requests.get(url, stream=True)
response.raise_for_status() # Check for request errors
# Total size of the file in bytes
total_size = int(response.headers.get('content-length', 0))
chunk_size = 1024 # Download in chunks of 1KB
# Use tqdm to display the progress bar
with open(filename, 'wb') as f, tqdm(
desc=filename,
total=total_size,
unit='B',
unit_scale=True,
unit_divisor=1024,
) as bar:
for chunk in response.iter_content(chunk_size=chunk_size):
f.write(chunk)
bar.update(len(chunk))
return filename
def sample_sharegpt_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError('output_len too small')
# Download sharegpt if necessary
if not os.path.isfile(dataset_path):
dataset_path = download_and_cache_file(SHAREGPT_URL)
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data['conversations']) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data['conversations'][0]['value'], data['conversations'][1]['value']) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer.encode(prompt)
completion = dataset[i][1]
completion_token_ids = tokenizer.encode(completion)
prompt_len = len(prompt_token_ids)
output_len = (len(completion_token_ids) if fixed_output_len is None else fixed_output_len)
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if prompt_len > 1024 or (prompt_len + output_len > 2048 and fixed_output_len is None):
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
print(f'#Input tokens: {np.sum([x[1] for x in filtered_dataset])}')
print(f'#Output tokens: {np.sum([x[2] for x in filtered_dataset])}')
return filtered_dataset
def sample_random_requests(
input_len: int,
output_len: int,
num_prompts: int,
range_ratio: float,
tokenizer: PreTrainedTokenizerBase,
dataset_path: str,
) -> List[Tuple[str, int, int]]:
input_lens = np.random.randint(
max(int(input_len * range_ratio), 1),
input_len + 1,
size=num_prompts,
)
output_lens = np.random.randint(
int(output_len * range_ratio),
output_len + 1,
size=num_prompts,
)
if True:
# Sample token ids from ShareGPT and repeat/truncate them to
# satisfy the input_lens
# Download sharegpt if necessary
if not os.path.isfile(dataset_path):
dataset_path = download_and_cache_file(SHAREGPT_URL)
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data['conversations']) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data['conversations'][0]['value'], data['conversations'][1]['value']) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
input_requests: List[Tuple[str, int, int]] = []
for i in range(num_prompts):
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer.encode(prompt)
prompt_len = len(prompt_token_ids)
if prompt_len > input_lens[i]:
input_ids = prompt_token_ids[:input_lens[i]]
else:
ratio = (input_lens[i] + prompt_len - 1) // prompt_len
input_ids = (prompt_token_ids * ratio)[:input_lens[i]]
prompt = tokenizer.decode(input_ids)
input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
else:
# Sample token ids from random integers.
# This can cause some NaN issues.
offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
input_requests = []
for i in range(num_prompts):
prompt = tokenizer.decode([(offsets[i] + i + j) % tokenizer.vocab_size for j in range(input_lens[i])])
input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
print(f'#Input tokens: {np.sum(input_lens)}')
print(f'#Output tokens: {np.sum(output_lens)}')
return input_requests
async def get_request(
input_requests: List[Tuple[str, int, int]],
request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
input_requests = iter(input_requests)
for request in input_requests:
yield request
if request_rate == float('inf'):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
backend: str,
) -> Tuple[BenchmarkMetrics, List[int]]:
output_lens: List[int] = []
retokenized_output_lens: List[int] = []
total_input = 0
completed = 0
itls: List[float] = []
tpots: List[float] = []
ttfts: List[float] = []
e2e_latencies: List[float] = []
for i in range(len(outputs)):
if outputs[i].success:
output_len = outputs[i].output_len
output_lens.append(output_len)
retokenized_output_len = len(tokenizer.encode(outputs[i].generated_text, add_special_tokens=False))
retokenized_output_lens.append(retokenized_output_len)
total_input += input_requests[i][1]
if output_len > 1:
tpots.append((outputs[i].latency - outputs[i].ttft) / (output_len - 1))
itls += outputs[i].itl
ttfts.append(outputs[i].ttft)
e2e_latencies.append(outputs[i].latency)
completed += 1
else:
output_lens.append(0)
retokenized_output_lens.append(0)
if completed == 0:
warnings.warn(
'All requests failed. This is likely due to a misconfiguration '
'on the benchmark arguments.',
stacklevel=2,
)
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
total_output=sum(output_lens),
total_output_retokenized=sum(retokenized_output_lens),
request_throughput=completed / dur_s,
input_throughput=total_input / dur_s,
output_throughput=sum(output_lens) / dur_s,
output_throughput_retokenized=sum(retokenized_output_lens) / dur_s,
mean_ttft_ms=np.mean(ttfts or 0) * 1000, # ttfts is empty if streaming is not supported by backend
median_ttft_ms=np.median(ttfts or 0) * 1000,
std_ttft_ms=np.std(ttfts or 0) * 1000,
p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
mean_tpot_ms=np.mean(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
std_tpot_ms=np.std(tpots or 0) * 1000,
p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
mean_itl_ms=np.mean(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
std_itl_ms=np.std(itls or 0) * 1000,
p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
mean_e2e_latency_ms=np.mean(e2e_latencies) * 1000,
median_e2e_latency_ms=np.median(e2e_latencies) * 1000,
)
return metrics, output_lens
async def benchmark(
backend: str,
api_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
request_rate: float,
disable_tqdm: bool,
extra_request_body: Dict[str, Any],
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
else:
raise ValueError(f'Unknown backend: {backend}')
print('Starting initial single prompt test run...')
test_prompt, test_prompt_len, test_output_len = input_requests[0]
test_input = RequestFuncInput(
model=model_id,
prompt=test_prompt,
api_url=api_url,
prompt_len=test_prompt_len,
output_len=test_output_len,
extra_request_body=extra_request_body,
)
test_output = await request_func(request_func_input=test_input)
if not test_output.success:
raise ValueError('Initial test run failed - Please make sure benchmark arguments '
f'are correctly specified. Error: {test_output.error}')
else:
print('Initial test run completed. Starting main benchmark run...')
time.sleep(1.5)
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
benchmark_start_time = time.perf_counter()
tasks: List[asyncio.Task] = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
request_func_input = RequestFuncInput(
model=model_id,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
extra_request_body=extra_request_body,
)
tasks.append(asyncio.create_task(request_func(request_func_input=request_func_input, pbar=pbar)))
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
if pbar is not None:
pbar.close()
benchmark_duration = time.perf_counter() - benchmark_start_time
metrics, output_lens = calculate_metrics(
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
backend=backend,
)
print('\n{s:{c}^{n}}'.format(s=' Serving Benchmark Result ', n=50, c='='))
print('{:<40} {:<10}'.format('Backend:', backend))
print('{:<40} {:<10}'.format('Traffic request rate:', request_rate))
print('{:<40} {:<10}'.format('Successful requests:', metrics.completed))
print('{:<40} {:<10.2f}'.format('Benchmark duration (s):', benchmark_duration))
print('{:<40} {:<10}'.format('Total input tokens:', metrics.total_input))
print('{:<40} {:<10}'.format('Total generated tokens:', metrics.total_output))
print('{:<40} {:<10}'.format('Total generated tokens (retokenized):', metrics.total_output_retokenized))
print('{:<40} {:<10.2f}'.format('Request throughput (req/s):', metrics.request_throughput))
print('{:<40} {:<10.2f}'.format('Input token throughput (tok/s):', metrics.input_throughput))
print('{:<40} {:<10.2f}'.format('Output token throughput (tok/s):', metrics.output_throughput))
print('{s:{c}^{n}}'.format(s='End-to-End Latency', n=50, c='-'))
print('{:<40} {:<10.2f}'.format('Mean E2E Latency (ms):', metrics.mean_e2e_latency_ms))
print('{:<40} {:<10.2f}'.format('Median E2E Latency (ms):', metrics.median_e2e_latency_ms))
print('{s:{c}^{n}}'.format(s='Time to First Token', n=50, c='-'))
print('{:<40} {:<10.2f}'.format('Mean TTFT (ms):', metrics.mean_ttft_ms))
print('{:<40} {:<10.2f}'.format('Median TTFT (ms):', metrics.median_ttft_ms))
print('{:<40} {:<10.2f}'.format('P99 TTFT (ms):', metrics.p99_ttft_ms))
print('{s:{c}^{n}}'.format(s='Time per Output Token (excl. 1st token)', n=50, c='-'))
print('{:<40} {:<10.2f}'.format('Mean TPOT (ms):', metrics.mean_tpot_ms))
print('{:<40} {:<10.2f}'.format('Median TPOT (ms):', metrics.median_tpot_ms))
print('{:<40} {:<10.2f}'.format('P99 TPOT (ms):', metrics.p99_tpot_ms))
print('{s:{c}^{n}}'.format(s='Inter-token Latency', n=50, c='-'))
print('{:<40} {:<10.2f}'.format('Mean ITL (ms):', metrics.mean_itl_ms))
print('{:<40} {:<10.2f}'.format('Median ITL (ms):', metrics.median_itl_ms))
print('{:<40} {:<10.2f}'.format('P99 ITL (ms):', metrics.p99_itl_ms))
print('=' * 50)
if (metrics.median_ttft_ms is not None and metrics.mean_itl_ms is not None
and metrics.output_throughput is not None):
result = {
'backend': args.backend,
'dataset_name': args.dataset_name,
'request_rate': request_rate,
'total_input_tokens': metrics.total_input,
'total_output_tokens': metrics.total_output,
'total_output_tokens_retokenized': metrics.total_output_retokenized,
'mean_e2e_latency_ms': metrics.mean_e2e_latency_ms,
'median_e2e_latency_ms': metrics.median_e2e_latency_ms,
'median_ttft_ms': metrics.median_ttft_ms,
'median_itl_ms': metrics.median_itl_ms,
'output_throughput': metrics.output_throughput,
'sharegpt_output_len': args.sharegpt_output_len,
'random_input_len': args.random_input_len,
'random_output_len': args.random_output_len,
'random_range_ratio': args.random_range_ratio,
'duration': benchmark_duration,
'completed': metrics.completed,
}
else:
print(f'Error running benchmark for request rate: {request_rate}')
print('-' * 30)
# Determine output file name
if args.output_file:
output_file_name = args.output_file
else:
now = datetime.now().strftime('%m%d')
if args.dataset_name == 'random':
output_file_name = f'{args.backend}_{now}_{args.num_prompts}_{args.random_input_len}_{args.random_output_len}.jsonl' # noqa
else:
output_file_name = f'{args.backend}_{now}_{args.num_prompts}_sharegpt.jsonl' # noqa
# Append results to a JSONL file
with open(output_file_name, 'a') as file:
file.write(json.dumps(result) + '\n')
result = {
'duration': benchmark_duration,
'completed': metrics.completed,
'total_input_tokens': metrics.total_input,
'total_output_tokens': metrics.total_output,
'total_output_tokens_retokenized': metrics.total_output_retokenized,
'request_throughput': metrics.request_throughput,
'input_throughput': metrics.input_throughput,
'output_throughput': metrics.output_throughput,
'mean_ttft_ms': metrics.mean_ttft_ms,
'median_ttft_ms': metrics.median_ttft_ms,
'std_ttft_ms': metrics.std_ttft_ms,
'p99_ttft_ms': metrics.p99_ttft_ms,
'mean_tpot_ms': metrics.mean_tpot_ms,
'median_tpot_ms': metrics.median_tpot_ms,
'std_tpot_ms': metrics.std_tpot_ms,
'p99_tpot_ms': metrics.p99_tpot_ms,
'mean_itl_ms': metrics.mean_itl_ms,
'median_itl_ms': metrics.median_itl_ms,
'std_itl_ms': metrics.std_itl_ms,
'p99_itl_ms': metrics.p99_itl_ms,
'input_lens': [output.prompt_len for output in outputs],
'output_lens': output_lens,
'ttfts': [output.ttft for output in outputs],
'itls': [output.itl for output in outputs],
'generated_texts': [output.generated_text for output in outputs],
'errors': [output.error for output in outputs],
'mean_e2e_latency_ms': metrics.mean_e2e_latency_ms,
'median_e2e_latency_ms': metrics.median_e2e_latency_ms,
}
return result
def parse_request_rate_range(request_rate_range):
if len(request_rate_range.split(',')) == 3:
start, stop, step = map(int, request_rate_range.split(','))
return list(range(start, stop, step))
else:
return list(map(int, request_rate_range.split(',')))
def check_chat_template(model_path):
try:
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
return 'chat_template' in tokenizer.init_kwargs
except Exception as e:
print(f'Fail to load tokenizer config with error={e}')
return False
def run_benchmark(args_: argparse.Namespace):
global args
args = args_
# Set global environments
set_ulimit()
random.seed(args.seed)
np.random.seed(args.seed)
extra_request_body = {}
if args.extra_request_body:
extra_request_body = json.loads(args.extra_request_body)
# Set url
if args.port is None:
args.port = {
'sglang': 30000,
'sglang-native': 30000,
'sglang-oai': 30000,
'lmdeploy': 23333,
'vllm': 8000,
'trt': 8000,
'gserver': 9988,
}.get(args.backend, 30000)
model_url = (f'{args.base_url}/v1/models' if args.base_url else f'http://{args.host}:{args.port}/v1/models')
if args.backend in ['sglang', 'sglang-native']:
api_url = (f'{args.base_url}/generate' if args.base_url else f'http://{args.host}:{args.port}/generate')
elif args.backend in ['sglang-oai', 'vllm', 'lmdeploy']:
api_url = (f'{args.base_url}/v1/completions'
if args.base_url else f'http://{args.host}:{args.port}/v1/completions')
elif args.backend == 'trt':
api_url = (
f'{args.base_url}/v2/models/ensemble/generate_stream'
if args.base_url else f'http://{args.host}:{args.port}/v2/models/ensemble/generate_stream' # noqa
)
if args.model is None:
print('Please provide a model using `--model` when using '
'`trt` backend.')
sys.exit(1)
elif args.backend == 'gserver':
api_url = args.base_url if args.base_url else \
f'{args.host}:{args.port}'
args.model = args.model or 'default'
# Get model name
if args.model is None:
try:
response = requests.get(model_url)
model_list = response.json().get('data', [])
args.model = model_list[0]['id'] if model_list else None
except Exception as e:
print(f'Failed to fetch model from {model_url}. Error: {e}')
print('Please specify the correct host and port using '
'`--host` and `--port`.')
sys.exit(1)
if args.model is None:
print('No model specified or found. Please provide a model '
'using `--model`.')
sys.exit(1)
if not check_chat_template(args.model):
print('\nWARNING It is recommended to use the `Chat` or `Instruct` '
'model for benchmarking.\n'
'Because when the tokenizer counts the output tokens, if '
'there is gibberish, it might count incorrectly.\n')
print(f'{args}\n')
# Read dataset
backend = args.backend
model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
tokenizer = get_tokenizer(tokenizer_id)
if args.dataset_name == 'sharegpt':
assert args.random_input_len is None and args.random_output_len is None
input_requests = sample_sharegpt_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
)
elif args.dataset_name == 'random':
assert args.random_input_len is not None and \
args.random_output_len is not None
input_requests = sample_random_requests(
input_len=args.random_input_len,
output_len=args.random_output_len,
num_prompts=args.num_prompts,
range_ratio=args.random_range_ratio,
tokenizer=tokenizer,
dataset_path=args.dataset_path,
)
else:
raise ValueError(f'Unknown dataset: {args.dataset_name}')
if not args.multi:
return asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
request_rate=args.request_rate,
disable_tqdm=args.disable_tqdm,
extra_request_body=extra_request_body,
))
else:
# Benchmark multiple rps.
# TODO: use a fixed duration to compute num_prompts
request_rates = parse_request_rate_range(args.request_rate_range)
for rate in request_rates:
asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
request_rate=rate,
disable_tqdm=args.disable_tqdm,
extra_request_body=extra_request_body,
))
def set_ulimit(target_soft_limit=65535):
resource_type = resource.RLIMIT_NOFILE
current_soft, current_hard = resource.getrlimit(resource_type)
if current_soft < target_soft_limit:
try:
resource.setrlimit(resource_type, (target_soft_limit, current_hard))
except ValueError as e:
print(f'Fail to set RLIMIT_NOFILE: {e}')
if __name__ == '__main__':
parser = ArgumentParser(description='Benchmark the online serving throughput.')
parser.add_argument(
'--backend',
type=str,
choices=list(ASYNC_REQUEST_FUNCS.keys()),
default='sglang',
help='Must specify a backend, depending on the LLM Inference Engine.',
)
parser.add_argument(
'--base-url',
type=str,
default=None,
help='Server or API base url if not using http host and port.',
)
parser.add_argument('--host', type=str, default='0.0.0.0', help='Default host is 0.0.0.0.')
parser.add_argument(
'--port',
type=int,
help='If not set, the default port is configured according to its '
'default value for different LLM Inference Engines.',
)
parser.add_argument(
'--dataset-name',
type=str,
default='sharegpt',
choices=['sharegpt', 'random'],
help='Name of the dataset to benchmark on.',
)
parser.add_argument('--dataset-path', type=str, default='', help='Path to the dataset.')
parser.add_argument(
'--model',
type=str,
help='Name or path of the model. If not set, the default model will '
'request /v1/models for conf.',
)
parser.add_argument(
'--tokenizer',
type=str,
help='Name or path of the tokenizer. If not set, using the model '
'conf.',
)
parser.add_argument(
'--num-prompts',
type=int,
default=1000,
help='Number of prompts to process. Default is 1000.',
)
parser.add_argument(
'--sharegpt-output-len',
type=int,
default=None,
help='Output length for each request. Overrides the output length '
'from the ShareGPT dataset.',
)
parser.add_argument(
'--random-input-len',
type=int,
help='Number of input tokens per request, used only for random '
'dataset.',
)
parser.add_argument(
'--random-output-len',
type=int,
help='Number of output tokens per request, used only for random '