-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtree_agg.py
282 lines (253 loc) · 7.88 KB
/
tree_agg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import torch.nn as nn
import torch
import math
from my_transformer import TransformerEncoderLayer, TransformerEncoder, LayerNorm
from gflownet_parser import create_position_ids
class transformer_binary_agg(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward,
dropout,
norm_first,
nlayers,
batch_first=True,
activation="relu",
):
nn.Module.__init__(self)
self.embedding_pos = nn.Embedding(3, d_model)
encoder_layer = TransformerEncoderLayer(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=dropout,
batch_first=batch_first,
activation=activation,
norm_first=norm_first,
)
encoder_norm = LayerNorm(d_model, eps=1e-5)
self.final_norm = LayerNorm(d_model, eps=1e-5)
self.model_encoder = TransformerEncoder(encoder_layer, nlayers, encoder_norm)
def forward(self, root, left, right):
x = torch.stack([root, left, right], dim=0)
x += self.embedding_pos.weight
return self.final_norm(self.model_encoder(x.unsqueeze(0))).squeeze(0)[0]
class transformer_unary_agg(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward,
dropout,
norm_first,
nlayers,
batch_first=True,
activation="relu",
):
nn.Module.__init__(self)
self.embedding_pos = nn.Embedding(2, d_model)
encoder_layer = TransformerEncoderLayer(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=dropout,
batch_first=batch_first,
activation=activation,
norm_first=norm_first,
)
encoder_norm = LayerNorm(d_model, eps=1e-5)
self.final_norm = LayerNorm(d_model, eps=1e-5)
self.model_encoder = TransformerEncoder(encoder_layer, nlayers, encoder_norm)
def forward(self, root, left):
x = torch.stack([root, left], dim=0)
x += self.embedding_pos.weight
return self.final_norm(self.model_encoder(x.unsqueeze(0))).squeeze(0)[0]
class trivial_unary_agg(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward,
dropout,
norm_first,
nlayers,
batch_first=True,
activation="relu",
):
nn.Module.__init__(self)
def forward(self, root, left):
return root
class trivial_binary_agg(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward,
dropout,
norm_first,
nlayers,
batch_first=True,
activation="relu",
):
nn.Module.__init__(self)
def forward(self, root, left, right):
return root
class skipmlp_unary_agg(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward,
dropout,
norm_first,
nlayers,
batch_first=True,
activation="relu",
):
nn.Module.__init__(self)
self.inp = nn.Linear(d_model * 2, d_model)
self.hidden = nn.Sequential(
*sum(
[
[nn.ReLU(), nn.Linear(d_model, d_model)]
if i != nlayers - 1
else [nn.ReLU(), nn.Linear(d_model, d_model)]
for i in range(nlayers)
],
[],
)
)
def forward(self, root, left):
return root + self.hidden(self.inp(torch.cat([root, left], dim=0)))
class skipmlp_binary_agg(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward,
dropout,
norm_first,
nlayers,
batch_first=True,
):
nn.Module.__init__(self)
self.inp = nn.Linear(d_model * 3, d_model)
self.hidden = nn.Sequential(
*sum(
[
[nn.ELU(), nn.Linear(d_model, d_model)]
if i != nlayers - 1
else [nn.ELU(), nn.Linear(d_model, d_model)]
for i in range(nlayers)
],
[],
)
)
def forward(self, root, left, right):
return root + self.hidden(self.inp(torch.cat([root, left, right], dim=0)))
class simplemlp_binary_agg(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward,
dropout,
norm_first,
nlayers,
batch_first=True,
):
nn.Module.__init__(self)
self.imp = nn.Linear(d_model * 2, d_model)
self.hidden = nn.Sequential(
*sum(
[
[nn.ELU(), nn.Linear(d_model, d_model)]
if i != nlayers - 1
else [nn.ELU(), nn.Linear(d_model, d_model)]
for i in range(nlayers)
],
[],
)
)
def forward(self, root, left, right):
return self.hidden(self.imp(torch.cat([left, right], dim=0)))
class aggregated_embedding(nn.Module):
def __init__(self, n_vocab, d_model, n_nts=0, agg_type="trivial"):
"""
agg_type:
- trivial : returns the embedding of the root node
- skipmlp : uses a skip mlp
- transformer : uses a transformer
"""
nn.Module.__init__(self)
self.d_model = d_model
self.n_vocab = n_vocab
self.n_nts = n_nts
self.embedding_tgt = nn.Embedding(n_vocab + n_nts, d_model)
if agg_type == "trivial":
unary_agg, binary_agg = trivial_unary_agg, trivial_binary_agg
elif agg_type == "skipmlp":
unary_agg, binary_agg = skipmlp_unary_agg, skipmlp_binary_agg
elif agg_type == "simplemlp":
unary_agg = None
binary_agg = simplemlp_binary_agg
elif agg_type == "transformer":
unary_agg, binary_agg = transformer_unary_agg, transformer_binary_agg
if unary_agg is not None:
self.uni_agg = unary_agg(
d_model=d_model,
nhead=4,
dim_feedforward=4 * d_model,
dropout=0,
norm_first=True,
nlayers=2,
)
else:
self.uni_agg = lambda x, y: y
self.bin_agg = binary_agg(
d_model=d_model,
nhead=4,
dim_feedforward=4 * d_model,
dropout=0,
norm_first=True,
nlayers=2,
)
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(
self.embedding_tgt.weight, mean=0.0, std=1 / self.d_model**0.5
)
def forward(self, tgt, ignore_data=False, ebm_cache=False):
encoded_tgt = torch.cat(
[
x.left.get_emb(
self.bin_agg,
self.uni_agg,
self.embedding_tgt.weight,
ignore_data=ignore_data,
ebm_cache=ebm_cache,
).unsqueeze(0)
for x in tgt
],
axis=0,
).to(self.embedding_tgt.weight.device)
return encoded_tgt
class TreeModel(torch.nn.Module):
def __init__(self, aggregator, d_model, device):
super().__init__()
self.aggregator = aggregator
self.device = device
self.output = nn.Sequential(
nn.Linear(d_model, 2 * d_model),
nn.ELU(),
nn.Linear(d_model * 2, d_model * 2),
nn.ELU(),
nn.Linear(d_model * 2, 1),
)
def forward(self, batch_trees):
if len(batch_trees) > 0:
agg_embed = self.aggregator(batch_trees, ignore_data=True, ebm_cache=True)
return self.output(agg_embed)
else:
return torch.tensor([]).to(self.device)