-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironment.py
511 lines (454 loc) · 18.3 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import random
from collections import deque
import networkx as nx
import torch
from typing import Any
from typing import List
from typing import Tuple
from utils import Transition
class NoPathFoundException(Exception):
pass
class Env:
def __init__(self, graph: nx.DiGraph, trans_e_model: torch.nn.Module):
if len(graph.nodes) == 0:
raise ValueError(
"Cannot operate on empty graph. "
"Recieved graph with `len(graph.nodes) == 0`."
)
self.graph = graph
self.nodes = list(graph.nodes)
self.trans_e_model = trans_e_model.to("cpu").eval()
self.current_head, self.current_tail = None, None
self.episode_path = []
self.episode_relations = []
def compute_dfs(self, start, end):
"""Performs DFS and path tracking."""
visited = set()
path = []
stop_dfs = False
def _compute_dfs(v):
"""Nested function to perform DFS."""
nonlocal self, end, visited, stop_dfs, path
path.append(v)
if end in self.graph[v]:
print("FOUND")
path.append(end)
stop_dfs = True
return path
visited.add(v)
for x in self.graph[v]:
if x not in visited and not stop_dfs and x in self.graph:
return _compute_dfs(x)
return _compute_dfs(start) or []
def compute_bfs(self, start: Any, end: Any, verbose: bool = False) -> List:
"""Performs BFS and path construction.
Args:
start: The starting node to compute the BFS from.
end: The ending node to compute the BFS to.
verbose: Whether to print out the BFS results or not.
Returns:
path (List): List of nodes from the starting node to
the ending node.
"""
# key: child node, value: parent node
# To keep track of each node and its parent
# to be used later to construct
# the path from the start to target entities.
path = {start: None}
def _compute_bfs():
"""Nested function for performing BFS."""
nonlocal self, path, start, end, verbose
visited = set()
# BFS queue
queue = deque([start])
while len(queue) > 0:
current_node = queue.popleft()
visited.add(current_node)
for node in self.graph[current_node]:
if node not in visited and node in self.graph:
queue.append(node)
path[node] = current_node
if node == end:
if verbose:
print(f"Found end node: {node}.")
return
visited.add(node)
def _trace_and_construct_path():
"""Nested function to trace the path
from the `path` dictionary and constructs the path.
"""
nonlocal start, end, path
constructed_path = [end]
while constructed_path[-1] != start:
try:
# Tracing and constructing path.
constructed_path.append(path[constructed_path[-1]])
except KeyError:
raise NoPathFoundException(
"No Path found from "
f"{constructed_path[-1]} "
f"to {start}."
)
constructed_path.reverse()
return constructed_path
_compute_bfs()
constructed_path = _trace_and_construct_path()
return constructed_path
def has_path(self, entity_1: Any, entity_2: Any) -> bool:
"""Checks whether the given two entities are connected or not.
Args:
entity_1 (Any): The starting entity to check whether it is
connected to the ending entity or not.
entity_2 (Any): The ending entity to check whether it is connected
to the starting entity or not.
Returns:
Boolean: indicating whether the passed entities
are connected or not.
"""
try:
path = self.compute_bfs(entity_1, entity_2)
return len(path) > 0
except NoPathFoundException:
return False
def sample_two_entities(
self, check_nodes_connection: bool = True, verbose: bool = False
) -> bool:
"""Samples random start and end entities and (optional) ensures that
they have paths.
Args:
check_nodes_connection (bool, optional): Whether to check
the nodes are
connected or not.
verbose (bool, optional): Whether to print out
the results or not.
Returns:
Boolean: indicating whether the passed entities are
connected or not.
"""
start_node, end_node = random.sample(self.nodes, k=2)
if verbose:
print(f"start node: {start_node} - end node: {end_node}")
if not check_nodes_connection:
return (start_node, end_node)
if not self.has_path(start_node, end_node):
if verbose:
print(
f"No path found from {start_node} to {end_node}. "
"Trying again..."
)
return self.sample_two_entities(check_nodes_connection, verbose)
return (start_node, end_node)
def sample_path(self, verbose: bool = False) -> List:
"""Samples random start and end entities
and finds the path between them.
Args:
verbose (bool): Whether to print the results or not.
Returns:
List: Path between the sampled start and end entities.
"""
start_node, end_node = self.sample_two_entities(False, verbose)
try:
path = self.compute_bfs(start_node, end_node)
if len(path) == 0:
print(
f"No path found from {start_node} to {end_node}. "
"Trying again..."
)
return self.sample_path(verbose=verbose)
except NoPathFoundException:
print(
f"No path found from {start_node} to {end_node}. "
"Trying again..."
)
self.sample_path(verbose=verbose)
return path
def get_state_embedding(self, state: Tuple) -> torch.Tensor:
"""Returns the embedding of the state.
Args:
state (tuple): The state to get the embedding for with length of 2.
Returns:
torch.Tensor: The embedding of the state.
"""
current_entity, target_entity = state
with torch.no_grad():
current_entity_embed = self.trans_e_model.ent_emb(
torch.tensor([current_entity])
)
target_entity_embed = self.trans_e_model.ent_emb(
torch.tensor([target_entity])
)
new_state = (
current_entity_embed,
target_entity_embed - current_entity_embed,
)
new_state = torch.concatenate(new_state, dim=-1)
return new_state
def pick_random_intermediates_between(
self, entity1: Any, entity2: Any, num_paths: int
) -> List:
"""Generate intermediate paths between two entities."""
intermediate_nodes = set()
if num_paths > len(self.nodes) - 2:
raise ValueError(
"Number of Intermediates picked is "
"larger than possible "
f"num_entities: {len(self.entities)}"
f"num_itermediates: {num_paths}"
)
for _ in range(num_paths):
intermediate_node = random.choice(self.nodes)
while (
intermediate_node in intermediate_nodes
or intermediate_node == entity1
or intermediate_node == entity2
):
intermediate_node = random.choice(self.nodes)
intermediate_nodes.add(intermediate_node)
return list(intermediate_nodes)
def _update_environment(
self, chosen_tail: Any, action: int
) -> torch.Tensor:
self.current_head = chosen_tail
self.episode_path.append(self.current_head)
self.episode_relations.append(action)
new_state = self.get_state_embedding(
(self.current_head, self.current_target)
)
return new_state
def step(self, action: int) -> Tuple:
"""Takes an action and updates the
environment by returning a reward and a new state.
Args:
action (int): action to be performed in the
current environment.
Returns:
Tuple: returns a new state, reward, done,
indicator if the latest path was correct or not.
"""
tails = [
node
for node, info in self.graph[self.current_head].items()
if info["relation"] == action
]
reward = 0
done = False
invalid_path = False
if self.current_target in tails:
done = True
reward = 0
new_state = None
self.episode_path.append(self.current_target)
if not done:
possible_tails = []
for tail in tails:
if self.has_path(tail, self.current_target):
possible_tails.append(tail)
if len(possible_tails) == 0:
new_state = None
reward = -1
done = True
invalid_path = True
else:
if len(possible_tails) > 1:
unique_new_tails = [
i for i in possible_tails if i not in self.episode_path
]
if len(unique_new_tails) > 0:
chosen_tail = random.choice(unique_new_tails)
else:
chosen_tail = random.choice(possible_tails)
else:
chosen_tail = possible_tails[0]
new_state = self._update_environment(chosen_tail, action)
return new_state, reward, done, invalid_path
def compute_shortest_path(
self, tails: List, exclude_tails_in_episode_path: bool = False
) -> Any:
"""Computes the shortest path between a given list of tails and
the current target entity.
Args:
tails (List): a list of tails to compute the shortest path to
the current target entity.
exclude_tails_in_episode_path (bool, optional): Whether to exclude
tails that exists
in the current
episode path
(`episode_path`)
or not.
Defaults to False.
Returns:
Any: The tail that has the shortest path to the target entity.
"""
tail_with_shortest_path = None
shortest_path = float("inf")
for tail in tails:
try:
path = self.compute_bfs(self.current_head, tail)
# To avoid not having any tails
# if all of them exist in `self.episode_path`.
if tail_with_shortest_path is None:
tail_with_shortest_path = tail
shortest_path = len(path)
elif len(path) < shortest_path:
if not exclude_tails_in_episode_path:
tail_with_shortest_path = tail
shortest_path = len(path)
elif (
exclude_tails_in_episode_path
and tail not in self.episode_path
):
tail_with_shortest_path = tail
shortest_path = len(path)
else:
continue
except NoPathFoundException:
continue
return tail_with_shortest_path
def shortest_step(self, action: int) -> Tuple:
"""Takes an action and updates the
environment by taking the shortest
possible step and returning a reward and a new states.
Args:
action (int): action to be performed
in the current environment.
Returns:
Tuple: returns a new state, reward, done,
indicator if the latest path was correct or not.
"""
tails = [
node
for node, info in self.graph[self.current_head].items()
if info["relation"] == action
]
reward = 0
done = False
invalid_path = False
if self.current_target in tails:
done = True
reward = 0
new_state = None
self.episode_path.append(self.current_target)
self.episode_relations.append(action)
if not done:
tail_with_shortest_path = self.compute_shortest_path(tails)
if len(tail_with_shortest_path) == 0:
new_state = None
reward = -1
done = True
invalid_path = True
else:
new_state = self._update_environment(
tail_with_shortest_path, action
)
return new_state, reward, done, invalid_path
# Still experimental method for
# aggregating the path and the relations.
def aggregate_path_and_relations(self):
aggregated_path = []
for idx, relation in enumerate(self.episode_relations):
aggregated_path.append(
(self.episode_path[idx], self.episode_path[idx + 1], relation)
)
def generate_episodes(
self,
entity_1: Any,
entity_2: Any,
num_paths: int,
verbose: bool = False,
) -> List[List[Transition]]:
"""Generates episodes by generating paths between two entities.
Args:
entity_1: The first entity to generate paths from.
entity_2: The second entity to generate paths to.
num_paths: The number of paths to generate between
the two entities.
verbose: Whether to print out the results or not.
Returns:
List[List[Transition]]: List of episode and each episode list
contains a list of transitions between
the two entities.
"""
intermediate_paths = self.pick_random_intermediates_between(
entity_1, entity_2, num_paths
)
paths = []
relations = []
for intermediate_path in intermediate_paths:
try:
entity_1_to_current_path = self.compute_bfs(
entity_1, intermediate_path, verbose
)
entity_2_to_current_path = self.compute_bfs(
intermediate_path, entity_2, verbose
)
entity_1_to_current_path.extend(entity_2_to_current_path[1:])
paths.append(entity_1_to_current_path)
relations.append(
[
self.graph[entity_1_to_current_path[idx]][
entity_1_to_current_path[idx + 1]
]["relation"]
for idx in range(len(entity_1_to_current_path) - 1)
]
)
except NoPathFoundException:
if verbose:
print(
"Could not find a path at "
f"intermediate point: {intermediate_path}. "
"Will be skipped."
)
else:
continue
good_episodes = []
target_id = entity_2
for path, relation in zip(paths, relations):
good_episode = []
for i in range(len(path) - 1):
curr_id = path[i]
next_id = path[i + 1]
state_curr = (curr_id, target_id)
state_next = (next_id, target_id)
action_id = relation[i]
good_episode.append(
Transition(
state=self.get_state_embedding(state_curr),
action=action_id,
next_state=self.get_state_embedding(state_next),
reward=1,
)
)
good_episodes.append(good_episode)
return good_episodes
def reset(self, verbose: bool = False) -> torch.Tensor:
"""Returns initial state.
Args:
verbose (bool): Whether to print any results or not.
Returns:
torch.Tensor: Initial state vector.
"""
sampled_path = self.sample_two_entities(
check_nodes_connection=True, verbose=verbose
)
self.current_head, self.current_target = sampled_path
self.initial_head = self.current_head
self.episode_path = [self.current_head]
self.episode_relations = []
initial_state = self.get_state_embedding(sampled_path)
return initial_state
def reset_from(self, entity_1: Any, entity_2: Any) -> torch.Tensor:
"""Returns initial state.
Args:
entity_1 (Any): The first entity to start from.
entity_2 (Any): The second entity to end at.
Returns:
torch.Tensor: Initial state vector.
"""
self.current_head, self.current_target = entity_1, entity_2
self.initial_head = self.current_head
self.episode_path = [self.current_head]
self.episode_relations = []
initial_state = self.get_state_embedding(
(self.current_head, self.current_target)
)
return initial_state