-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransE_training.py
127 lines (102 loc) · 3.53 KB
/
transE_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import torch
import torchkge
from torch import optim
from torchkge import MarginLoss, TransEModel
from torchkge.sampling import BernoulliNegativeSampler
from torchkge.utils import DataLoader, load_fb15k
from tqdm.auto import tqdm
def train_transE_model_on_freebase15k(
embed_dim=100,
lr=0.0004,
epochs=1000,
batch_size=32768,
margin=0.5,
normalize_after_training=True,
):
kg_train, _, _ = load_fb15k()
model = TransEModel(
embed_dim, kg_train.n_ent, kg_train.n_rel, dissimilarity_type="L2"
)
criterion = MarginLoss(margin)
if torch.cuda.is_available():
torch.cuda.empty_cache()
model.cuda()
criterion.cuda()
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=1e-5)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
factor=0.1,
patience=5)
sampler = BernoulliNegativeSampler(kg_train)
dataloader = DataLoader(kg_train, batch_size=batch_size, use_cuda="all")
iterator = tqdm(range(epochs), unit="epoch")
for epoch in iterator:
running_loss = 0.0
for i, batch in enumerate(dataloader):
h, t, r = batch[0], batch[1], batch[2]
n_h, n_t = sampler.corrupt_batch(h, t, r)
optimizer.zero_grad()
# forward + backward + optimize
pos, neg = model(h, t, r, n_h, n_t)
loss = criterion(pos, neg)
loss.backward()
optimizer.step()
scheduler.step()
running_loss += loss.item()
iterator.set_description(
"Epoch {} | mean loss: {:.5f}".format(
epoch + 1, running_loss / len(dataloader)
)
)
torch.save(model.state_dict(), "trans_e_model_weights.pt")
if normalize_after_training:
model.normalize_parameters()
return model
def train_transE_model(
dataset: torchkge.data_structures.KnowledgeGraph,
embed_dim=100,
lr=0.0004,
epochs=1000,
batch_size=32768,
margin=0.5,
normalize_after_training=True,
save_dir=None,
model_name='transE_weights.pt'
):
model = TransEModel(
embed_dim, dataset.n_ent, dataset.n_rel, dissimilarity_type="L2"
)
criterion = MarginLoss(margin)
if torch.cuda.is_available():
torch.cuda.empty_cache()
model.cuda()
criterion.cuda()
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=1e-5)
sampler = BernoulliNegativeSampler(dataset)
dataloader = DataLoader(dataset, batch_size=batch_size, use_cuda="all")
iterator = tqdm(range(epochs), unit="epoch")
for epoch in iterator:
running_loss = 0.0
for i, batch in enumerate(dataloader):
h, t, r = batch[0], batch[1], batch[2]
n_h, n_t = sampler.corrupt_batch(h, t, r)
optimizer.zero_grad()
# forward + backward + optimize
pos, neg = model(h, t, r, n_h, n_t)
loss = criterion(pos, neg)
loss.backward()
optimizer.step()
running_loss += loss.item()
iterator.set_description(
"Epoch {} | mean loss: {:.5f}".format(
epoch + 1, running_loss / len(dataloader)
)
)
if save_dir is None:
save_dir = model_name
else:
save_dir = os.path.join(save_dir, model_name)
torch.save(model.state_dict(), save_dir)
if normalize_after_training:
model.normalize_parameters()
return model