-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathutils.py
167 lines (136 loc) · 5.48 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import random
import numpy as np
import torch
import wandb
import cv2
import os
"""
Utils File Used for Training/Validation/Testing
"""
##################################################################################################
def log_metrics(**kwargs) -> None:
# data to be logged
log_data = {}
log_data.update(kwargs)
# log the data
wandb.log(log_data)
##################################################################################################
def save_checkpoint(model, optimizer, filename="my_checkpoint.pth.tar") -> None:
# print("=> Saving checkpoint")
checkpoint = {
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
torch.save(checkpoint, filename)
##################################################################################################
def load_checkpoint(config, model, optimizer, load_optimizer=True):
print("=> Loading checkpoint")
checkpoint = torch.load(config.checkpoint_file_name, map_location=config.device)
model.load_state_dict(checkpoint["state_dict"])
if load_optimizer:
optimizer.load_state_dict(checkpoint["optimizer"])
# If we don't do this then it will just have learning rate of old checkpoint
# and it will lead to many hours of debugging \:
for param_group in optimizer.param_groups:
param_group["lr"] = config.learning_rate
return model, optimizer
##################################################################################################
def seed_everything(seed: int = 42) -> None:
os.environ["PYTHONHASHSEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
##################################################################################################
def random_translate(images, dataset="cifar10"):
"""
This function takes multiple images, and translates each image randomly by at most quarter of the image.
"""
(N, C, H, W) = images.shape
min_pixel = torch.min(images).item()
new_images = []
for i in range(images.shape[0]):
img = images[i].numpy() # [C,H,W]
img = np.transpose(img, (1, 2, 0)) # [H,W,C]
dx = random.randrange(-8, 9, 1)
dy = random.randrange(-8, 9, 1)
M = np.float32([[1, 0, dx], [0, 1, dy]])
image_trans = cv2.warpAffine(img, M, (H, W)).reshape(H, W, C)
image_trans = np.transpose(image_trans, (2, 0, 1)) # [C,H,W]
new_images.append(image_trans)
new_images = torch.tensor(np.stack(new_images, axis=0), dtype=torch.float32)
return new_images
##################################################################################################
def initialize_weights(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0)
elif isinstance(m, torch.nn.BatchNorm2d):
torch.nn.init.constant_(m.weight.data, 1)
if m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0)
elif isinstance(m, torch.nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0)
##################################################################################################
def save_and_print(
config,
model,
optimizer,
epoch,
train_loss,
val_loss,
accuracy,
best_val_acc,
save_acc: bool = True,
) -> None:
"""_summary_
Args:
model (_type_): _description_
optimizer (_type_): _description_
epoch (_type_): _description_
train_loss (_type_): _description_
val_loss (_type_): _description_
accuracy (_type_): _description_
best_val_acc (_type_): _description_
"""
if save_acc:
if accuracy > best_val_acc:
# change path name based on cutoff epoch
if epoch <= config.cutoff_epoch:
save_path = os.path.join(
config.checkpoint_save_dir, "best_acc_model.pth"
)
else:
save_path = os.path.join(
config.checkpoint_save_dir, "best_acc_model_post_cutoff.pth"
)
# save checkpoint and log
save_checkpoint(model, optimizer, save_path)
print(
f"=> epoch -- {epoch} || train loss -- {train_loss:.4f} || val loss -- {val_loss:.4f} || val acc -- {accuracy:.4f} -- saved"
)
else:
save_path = os.path.join(config.checkpoint_save_dir, "checkpoint.pth")
save_checkpoint(model, optimizer, save_path)
print(
f"=> epoch -- {epoch} || train loss -- {train_loss:.4f} || val loss -- {val_loss:.4f} || val acc -- {accuracy:.4f}"
)
else:
# change path name based on cutoff epoch
if epoch <= config.cutoff_epoch:
save_path = os.path.join(config.checkpoint_save_dir, "best_loss_model.pth")
else:
save_path = os.path.join(
config.checkpoint_save_dir, "best_loss_model_post_cutoff.pth"
)
# save checkpoint and log
save_checkpoint(model, optimizer, save_path)
print(
f"=> epoch -- {epoch} || train loss -- {train_loss:.4f} || val loss -- {val_loss:.4f}"
)