-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbionic_benchmarks.cpp
605 lines (538 loc) · 19.1 KB
/
bionic_benchmarks.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <err.h>
#include <getopt.h>
#include <inttypes.h>
#include <math.h>
#include <sys/resource.h>
#include <map>
#include <mutex>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <benchmark/benchmark.h>
#include <tinyxml2.h>
#include "util.h"
#define _STR(x) #x
#define STRINGFY(x) _STR(x)
static const std::vector<int> kCommonSizes{
8,
16,
32,
64,
512,
1 * KB,
8 * KB,
16 * KB,
32 * KB,
64 * KB,
128 * KB,
};
static const std::vector<int> kSmallSizes{
// Increment by 1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
// Increment by 8
24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144,
// Increment by 16
160, 176, 192, 208, 224, 240, 256,
};
static const std::vector<int> kMediumSizes{
512,
1 * KB,
8 * KB,
16 * KB,
32 * KB,
64 * KB,
128 * KB,
};
static const std::vector<int> kLargeSizes{
256 * KB,
512 * KB,
1024 * KB,
2048 * KB,
};
static std::map<std::string, const std::vector<int> &> kSizes{
{ "SMALL", kSmallSizes },
{ "MEDIUM", kMediumSizes },
{ "LARGE", kLargeSizes },
};
std::map<std::string, std::pair<benchmark_func_t, std::string>> g_str_to_func;
std::mutex g_map_lock;
static struct option g_long_options[] =
{
{"bionic_cpu", required_argument, nullptr, 'c'},
{"bionic_xml", required_argument, nullptr, 'x'},
{"bionic_iterations", required_argument, nullptr, 'i'},
{"bionic_extra", required_argument, nullptr, 'a'},
{"help", no_argument, nullptr, 'h'},
{nullptr, 0, nullptr, 0},
};
typedef std::vector<std::vector<int64_t>> args_vector_t;
void Usage() {
printf("Usage:\n");
printf("bionic_benchmarks [--bionic_cpu=<cpu_to_isolate>]\n");
printf(" [--bionic_xml=<path_to_xml>]\n");
printf(" [--bionic_iterations=<num_iter>]\n");
printf(" [--bionic_extra=\"<fn_name> <arg1> <arg 2> ...\"]\n");
printf(" [<Google benchmark flags>]\n");
printf("Google benchmark flags:\n");
int fake_argc = 2;
char argv0[] = "bionic_benchmarks";
char argv1[] = "--help";
char* fake_argv[3] {argv0, argv1, nullptr};
benchmark::Initialize(&fake_argc, fake_argv);
exit(1);
}
// This function removes any bionic benchmarks command line arguments by checking them
// against g_long_options. It fills new_argv with the filtered args.
void SanitizeOpts(int argc, char** argv, std::vector<char*>* new_argv) {
// TO THOSE ADDING OPTIONS: This currently doesn't support optional arguments.
(*new_argv)[0] = argv[0];
for (int i = 1; i < argc; ++i) {
char* optarg = argv[i];
size_t opt_idx = 0;
// Iterate through g_long_options until either we hit the end or we have a match.
for (opt_idx = 0; g_long_options[opt_idx].name &&
strncmp(g_long_options[opt_idx].name, optarg + 2,
strlen(g_long_options[opt_idx].name)); ++opt_idx) {
}
if (!g_long_options[opt_idx].name) {
new_argv->push_back(optarg);
} else {
if (g_long_options[opt_idx].has_arg == required_argument) {
// If the arg was passed in with an =, it spans one char *.
// Otherwise, we skip a spot for the argument.
if (!strchr(optarg, '=')) {
i++;
}
}
}
}
new_argv->push_back(nullptr);
}
bench_opts_t ParseOpts(int argc, char** argv) {
bench_opts_t opts;
int opt;
int option_index = 0;
// To make this parser handle the benchmark options silently:
extern int opterr;
opterr = 0;
while ((opt = getopt_long(argc, argv, "c:x:i:a:h", g_long_options, &option_index)) != -1) {
if (opt == -1) {
break;
}
switch (opt) {
case 'c':
if (*optarg) {
char* check_null;
opts.cpu_to_lock = strtol(optarg, &check_null, 10);
if (*check_null) {
errx(1, "ERROR: Args %s is not a valid integer.", optarg);
}
} else {
printf("ERROR: no argument specified for bionic_cpu\n");
Usage();
}
break;
case 'x':
if (*optarg) {
opts.xmlpath = optarg;
} else {
printf("ERROR: no argument specified for bionic_xml\n");
Usage();
}
break;
case 'a':
if (*optarg) {
opts.extra_benchmarks.push_back(optarg);
} else {
printf("ERROR: no argument specified for bionic_extra\n");
Usage();
}
break;
case 'i':
if (*optarg){
char* check_null;
opts.num_iterations = strtol(optarg, &check_null, 10);
if (*check_null != '\0' or opts.num_iterations < 0) {
errx(1, "ERROR: Args %s is not a valid number of iterations.", optarg);
}
} else {
printf("ERROR: no argument specified for bionic_iterations\n");
Usage();
}
break;
case 'h':
Usage();
break;
case '?':
break;
default:
exit(1);
}
}
return opts;
}
// This is a wrapper for every function call for per-benchmark cpu pinning.
void LockAndRun(benchmark::State& state, benchmark_func_t func_to_bench, int cpu_to_lock) {
if (cpu_to_lock >= 0) LockToCPU(cpu_to_lock);
// To avoid having to link against Google benchmarks in libutil,
// benchmarks are kept without parameter information, necessitating this cast.
reinterpret_cast<void(*) (benchmark::State&)>(func_to_bench)(state);
}
static constexpr char kOnebufManualStr[] = "AT_ONEBUF_MANUAL_ALIGN_";
static constexpr char kTwobufManualStr[] = "AT_TWOBUF_MANUAL_ALIGN1_";
static bool ParseOnebufManualStr(std::string& arg, args_vector_t* to_populate) {
// The format of this is:
// AT_ONEBUF_MANUAL_ALIGN_XX_SIZE_YY
// Where:
// XX is the alignment
// YY is the size
// The YY size can be either a number or a string representing the pre-defined
// sets of values:
// SMALL (for values between 1 and 256)
// MEDIUM (for values between 512 and 128KB)
// LARGE (for values between 256KB and 2048KB)
int64_t align;
int64_t size;
char sizes[32] = { 0 };
int ret;
ret = sscanf(arg.c_str(), "AT_ONEBUF_MANUAL_ALIGN_%" SCNd64 "_SIZE_%" SCNd64,
&align, &size);
if (ret == 1) {
ret = sscanf(arg.c_str(), "AT_ONEBUF_MANUAL_ALIGN_%" SCNd64 "_SIZE_"
"%" STRINGFY(sizeof(sizes)-1) "s", &align, sizes);
}
if (ret != 2) {
return false;
}
// Verify the alignment is powers of 2.
if (align != 0 && (align & (align - 1)) != 0) {
return false;
}
auto sit = kSizes.find(sizes);
if (sit == kSizes.cend()) {
to_populate->push_back({size, align});
} else {
for (auto ssize : sit->second) {
to_populate->push_back({ssize, align});
}
}
return true;
}
static bool ParseTwobufManualStr(std::string& arg, args_vector_t* to_populate) {
// The format of this is:
// AT_TWOBUF_MANUAL_ALIGN1_XX_ALIGN2_YY_SIZE_ZZ
// Where:
// XX is the alignment of the first argument
// YY is the alignment of the second argument
// ZZ is the size
// The ZZ size can be either a number or a string representing the pre-defined
// sets of values:
// SMALL (for values between 1 and 256)
// MEDIUM (for values between 512 and 128KB)
// LARGE (for values between 256KB and 2048KB)
int64_t align1;
int64_t align2;
int64_t size;
char sizes[32] = { 0 };
int ret;
ret = sscanf(arg.c_str(), "AT_TWOBUF_MANUAL_ALIGN1_%" SCNd64 "_ALIGN2_%" SCNd64 "_SIZE_%" SCNd64,
&align1, &align2, &size);
if (ret == 2) {
ret = sscanf(arg.c_str(), "AT_TWOBUF_MANUAL_ALIGN1_%" SCNd64 "_ALIGN2_%" SCNd64 "_SIZE_"
"%" STRINGFY(sizeof(sizes)-1) "s",
&align1, &align2, sizes);
}
if (ret != 3) {
return false;
}
// Verify the alignments are powers of 2.
if ((align1 != 0 && (align1 & (align1 - 1)) != 0)
|| (align2 != 0 && (align2 & (align2 - 1)) != 0)) {
return false;
}
auto sit = kSizes.find(sizes);
if (sit == kSizes.cend()) {
to_populate->push_back({size, align1, align2});
} else {
for (auto ssize : sit->second) {
to_populate->push_back({ssize, align1, align2});
}
}
return true;
}
args_vector_t* ResolveArgs(args_vector_t* to_populate, std::string args,
std::map<std::string, args_vector_t>& args_shorthand) {
// args is either a space-separated list of ints, a macro name, or
// special free form macro.
// To ease formatting in XML files, args is left and right trimmed.
if (args_shorthand.count(args)) {
return &args_shorthand[args];
}
// Check for free form macro.
if (android::base::StartsWith(args, kOnebufManualStr)) {
if (!ParseOnebufManualStr(args, to_populate)) {
errx(1, "ERROR: Bad format of macro %s, should be AT_ONEBUF_MANUAL_ALIGN_XX_SIZE_YY",
args.c_str());
}
return to_populate;
} else if (android::base::StartsWith(args, kTwobufManualStr)) {
if (!ParseTwobufManualStr(args, to_populate)) {
errx(1,
"ERROR: Bad format of macro %s, should be AT_TWOBUF_MANUAL_ALIGN1_XX_ALIGNE2_YY_SIZE_ZZ",
args.c_str());
}
return to_populate;
}
to_populate->push_back(std::vector<int64_t>());
std::stringstream sstream(args);
std::string argstr;
while (sstream >> argstr) {
char* check_null;
int converted = static_cast<int>(strtol(argstr.c_str(), &check_null, 10));
if (*check_null) {
errx(1, "ERROR: Args str %s contains an invalid macro or int.", args.c_str());
}
(*to_populate)[0].push_back(converted);
}
return to_populate;
}
void RegisterGoogleBenchmarks(bench_opts_t primary_opts, bench_opts_t secondary_opts,
const std::string& fn_name, args_vector_t* run_args) {
if (g_str_to_func.find(fn_name) == g_str_to_func.end()) {
errx(1, "ERROR: No benchmark for function %s", fn_name.c_str());
}
long iterations_to_use = primary_opts.num_iterations ? primary_opts.num_iterations :
secondary_opts.num_iterations;
int cpu_to_use = -1;
if (primary_opts.cpu_to_lock >= 0) {
cpu_to_use = primary_opts.cpu_to_lock;
} else if (secondary_opts.cpu_to_lock >= 0) {
cpu_to_use = secondary_opts.cpu_to_lock;
}
benchmark_func_t benchmark_function = g_str_to_func.at(fn_name).first;
for (const std::vector<int64_t>& args : (*run_args)) {
auto registration = benchmark::RegisterBenchmark(fn_name.c_str(), LockAndRun,
benchmark_function,
cpu_to_use)->Args(args);
if (iterations_to_use > 0) {
registration->Iterations(iterations_to_use);
}
}
}
void RegisterCliBenchmarks(bench_opts_t cmdline_opts,
std::map<std::string, args_vector_t>& args_shorthand) {
// Register any of the extra benchmarks that were specified in the options.
args_vector_t arg_vector;
args_vector_t* run_args = &arg_vector;
for (const std::string& extra_fn : cmdline_opts.extra_benchmarks) {
android::base::Trim(extra_fn);
size_t first_space_pos = extra_fn.find(' ');
std::string fn_name = extra_fn.substr(0, first_space_pos);
std::string cmd_args;
if (first_space_pos != std::string::npos) {
cmd_args = extra_fn.substr(extra_fn.find(' ') + 1);
} else {
cmd_args = "";
}
run_args = ResolveArgs(run_args, cmd_args, args_shorthand);
RegisterGoogleBenchmarks(bench_opts_t(), cmdline_opts, fn_name, run_args);
run_args = &arg_vector;
arg_vector.clear();
}
}
int RegisterXmlBenchmarks(bench_opts_t cmdline_opts,
std::map<std::string, args_vector_t>& args_shorthand) {
// Structure of the XML file:
// - Element "fn" Function to benchmark.
// - - Element "iterations" Number of iterations to run. Leaving this blank uses
// Google benchmarks' convergence heuristics.
// - - Element "cpu" CPU to isolate to, if any.
// - - Element "args" Whitespace-separated list of per-function integer arguments, or
// one of the macros defined in util.h.
tinyxml2::XMLDocument doc;
if (doc.LoadFile(cmdline_opts.xmlpath.c_str()) != tinyxml2::XML_SUCCESS) {
doc.PrintError();
return doc.ErrorID();
}
// Read and register the functions.
tinyxml2::XMLNode* fn = doc.FirstChildElement("fn");
while (fn) {
if (fn == fn->ToComment()) {
// Skip comments.
fn = fn->NextSibling();
continue;
}
auto fn_elem = fn->FirstChildElement("name");
if (!fn_elem) {
errx(1, "ERROR: Malformed XML entry: missing name element.");
}
std::string fn_name = fn_elem->GetText();
if (fn_name.empty()) {
errx(1, "ERROR: Malformed XML entry: error parsing name text.");
}
auto* xml_args = fn->FirstChildElement("args");
args_vector_t arg_vector;
args_vector_t* run_args = ResolveArgs(&arg_vector,
xml_args ? android::base::Trim(xml_args->GetText()) : "",
args_shorthand);
// XML values for CPU and iterations take precedence over those passed in via CLI.
bench_opts_t xml_opts{};
auto* num_iterations_elem = fn->FirstChildElement("iterations");
if (num_iterations_elem) {
int temp;
num_iterations_elem->QueryIntText(&temp);
xml_opts.num_iterations = temp;
}
auto* cpu_to_lock_elem = fn->FirstChildElement("cpu");
if (cpu_to_lock_elem) {
int temp;
cpu_to_lock_elem->QueryIntText(&temp);
xml_opts.cpu_to_lock = temp;
}
RegisterGoogleBenchmarks(xml_opts, cmdline_opts, fn_name, run_args);
fn = fn->NextSibling();
}
return 0;
}
static void SetArgs(const std::vector<int>& sizes, args_vector_t* args) {
for (int size : sizes) {
args->push_back({size});
}
}
static void SetArgs(const std::vector<int>& sizes, int align, args_vector_t* args) {
for (int size : sizes) {
args->push_back({size, align});
}
}
static void SetArgs(const std::vector<int>& sizes, int align1, int align2, args_vector_t* args) {
for (int size : sizes) {
args->push_back({size, align1, align2});
}
}
static args_vector_t GetArgs(const std::vector<int>& sizes) {
args_vector_t args;
SetArgs(sizes, &args);
return args;
}
static args_vector_t GetArgs(const std::vector<int>& sizes, int align) {
args_vector_t args;
SetArgs(sizes, align, &args);
return args;
}
static args_vector_t GetArgs(const std::vector<int>& sizes, int align1, int align2) {
args_vector_t args;
SetArgs(sizes, align1, align2, &args);
return args;
}
std::map<std::string, args_vector_t> GetShorthand() {
std::vector<int> all_sizes(kSmallSizes);
all_sizes.insert(all_sizes.end(), kMediumSizes.begin(), kMediumSizes.end());
all_sizes.insert(all_sizes.end(), kLargeSizes.begin(), kLargeSizes.end());
std::map<std::string, args_vector_t> args_shorthand {
{"AT_COMMON_SIZES", GetArgs(kCommonSizes)},
{"AT_SMALL_SIZES", GetArgs(kSmallSizes)},
{"AT_MEDIUM_SIZES", GetArgs(kMediumSizes)},
{"AT_LARGE_SIZES", GetArgs(kLargeSizes)},
{"AT_ALL_SIZES", GetArgs(all_sizes)},
{"AT_ALIGNED_ONEBUF", GetArgs(kCommonSizes, 0)},
{"AT_ALIGNED_ONEBUF_SMALL", GetArgs(kSmallSizes, 0)},
{"AT_ALIGNED_ONEBUF_MEDIUM", GetArgs(kMediumSizes, 0)},
{"AT_ALIGNED_ONEBUF_LARGE", GetArgs(kLargeSizes, 0)},
{"AT_ALIGNED_ONEBUF_ALL", GetArgs(all_sizes, 0)},
{"AT_ALIGNED_TWOBUF", GetArgs(kCommonSizes, 0, 0)},
{"AT_ALIGNED_TWOBUF_SMALL", GetArgs(kSmallSizes, 0, 0)},
{"AT_ALIGNED_TWOBUF_MEDIUM", GetArgs(kMediumSizes, 0, 0)},
{"AT_ALIGNED_TWOBUF_LARGE", GetArgs(kLargeSizes, 0, 0)},
{"AT_ALIGNED_TWOBUF_ALL", GetArgs(all_sizes, 0, 0)},
// Do not exceed 512. that is about the largest number of properties
// that can be created with the current property area size.
{"NUM_PROPS", args_vector_t{ {1}, {4}, {16}, {64}, {128}, {256}, {512} }},
{"MATH_COMMON", args_vector_t{ {0}, {1}, {2}, {3} }},
{"MATH_SINCOS_COMMON", args_vector_t{ {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7} }},
};
args_vector_t args_onebuf;
args_vector_t args_twobuf;
for (int size : all_sizes) {
args_onebuf.push_back({size, 0});
args_twobuf.push_back({size, 0, 0});
// Skip alignments on zero sizes.
if (size == 0) {
continue;
}
for (int align1 = 1; align1 <= 32; align1 <<= 1) {
args_onebuf.push_back({size, align1});
for (int align2 = 1; align2 <= 32; align2 <<= 1) {
args_twobuf.push_back({size, align1, align2});
}
}
}
args_shorthand.emplace("AT_MANY_ALIGNED_ONEBUF", args_onebuf);
args_shorthand.emplace("AT_MANY_ALIGNED_TWOBUF", args_twobuf);
return args_shorthand;
}
static bool FileExists(const std::string& file) {
struct stat st;
return stat(file.c_str(), &st) != -1 && S_ISREG(st.st_mode);
}
void RegisterAllBenchmarks(const bench_opts_t& opts,
std::map<std::string, args_vector_t>& args_shorthand) {
for (auto& entry : g_str_to_func) {
auto& function_info = entry.second;
args_vector_t arg_vector;
args_vector_t* run_args = ResolveArgs(&arg_vector, function_info.second,
args_shorthand);
RegisterGoogleBenchmarks(bench_opts_t(), opts, entry.first, run_args);
}
}
int main(int argc, char** argv) {
std::map<std::string, args_vector_t> args_shorthand = GetShorthand();
bench_opts_t opts = ParseOpts(argc, argv);
std::vector<char*> new_argv(argc);
SanitizeOpts(argc, argv, &new_argv);
if (opts.xmlpath.empty()) {
// Don't add the default xml file if a user is specifying the tests to run.
if (opts.extra_benchmarks.empty()) {
RegisterAllBenchmarks(opts, args_shorthand);
}
} else if (!FileExists(opts.xmlpath)) {
// See if this is a file in the suites directory.
std::string file(android::base::GetExecutableDirectory() + "/suites/" + opts.xmlpath);
if (opts.xmlpath[0] == '/' || !FileExists(file)) {
printf("Cannot find xml file %s: does not exist or is not a file.\n", opts.xmlpath.c_str());
return 1;
}
opts.xmlpath = file;
}
if (!opts.xmlpath.empty()) {
if (int err = RegisterXmlBenchmarks(opts, args_shorthand)) {
return err;
}
}
RegisterCliBenchmarks(opts, args_shorthand);
// Set the thread priority to the maximum.
if (setpriority(PRIO_PROCESS, 0, -20)) {
perror("Failed to raise priority of process. Are you root?\n");
}
int new_argc = new_argv.size();
benchmark::Initialize(&new_argc, new_argv.data());
benchmark::RunSpecifiedBenchmarks();
}