-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTest_Stationary.py
59 lines (53 loc) · 3.29 KB
/
Test_Stationary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import pandas as pd
import seaborn as sns
from statsmodels.tsa import stattools
import matplotlib.pyplot as plt
def test_stationary(data, window):
"""
param Data: Data is a ndarray and often 1 * N
param window: Size of the moving window. If an integer, the fixed number of observations used for each window.
If an offset, the time period of each window. Each window will be a variable sized based on the observations included
in the time-period.
return: Convert non-stationary data to stationary data if Data is Non-Stationary.
Check Stationary Time Series: 1)Rolling statistics: plot the moving average/variance and see if it varies with
time. 2) Augmented Dickey-Fuller Test: result[0]: When the test statistic is lower than the critical value shown,
the time series is stationary result[1]: p-value >>>> If Test statistic < Critical Value and p-value < 0.05 >>>>
the time series is stationary. Stationary means >>> mean, variance and covariance is constant over periods and
auto-covariance that does not depend on time.
Converting Non-stationary data to stationary dataset:
Log: np.log(Data)
Differencing simple moving average: MA = Data.rolling(window=window).mean()
Data = Data - MA
Data.dropna(inplace=True)
"""
# ================================ Step 2: Check Stationary Time Series ========================================
data1 = data
sns.set(style='white')
result = stattools.adfuller(data) # Perform Dickey-Fuller Test
if result[0] < result[4]["5%"]:
fig, ax1 = plt.subplots(1, 1, sharey='row', figsize=(10, 6))
plt.rcParams.update({'font.size': 11})
ax1.set_title('Rolling Mean & Standard Deviation; ' + 'p-value:' + str(round(result[1], 3)) + '; Data is Stationary')
else:
fig, (ax1, ax2) = plt.subplots(2, 1, sharey='row', figsize=(10, 6))
plt.rcParams.update({'font.size': 11})
ax1.set_title('Rolling Mean & Standard Deviation; ' + 'p-value:' + str(round(result[1], 3)) + '; Data is Non-Stationary')
data = data - data.rolling(window=window).mean() # X.diff(periods=1)
data.dropna(inplace=True)
data.index = (np.linspace(0, len(data), num=len(data), endpoint=False, dtype='int'))
data = pd.Series(data)
result = stattools.adfuller(data) # Perform Dickey-Fuller Test
ax2.plot(data)
ax2.plot(data.rolling(window=window).mean()) # Determine rolling statistics
ax2.plot(data.rolling(window=window).std())
ax2.set_title('Rolling Mean & Standard Deviation; ' + 'p-value:' + str(round(result[1], 3)) + '; Data is Stationary')
output_result = pd.Series(result[0:4], index=['Test Statistic', 'p-value', '#lags used', 'number of observations used'])
for key, value in result[4].items():
output_result['critical value (%s)' % key] = value
print(output_result)
ax1.plot(data1, label='Data')
ax1.plot(data1.rolling(window=window).mean(), label='Rolling Mean') # Determine rolling statistics
ax1.plot(data1.rolling(window=window).std(), label='Rolling Std')
ax1.legend(loc='best'), plt.tight_layout(), plt.show()
return data