-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathBronKerbosch.java
154 lines (127 loc) · 3.85 KB
/
BronKerbosch.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
* The Bron-Kerbosch algorithm is an algorithm for finding maximal cliques in an undirected graph using recursive backtracking.
* A clique is defined to be a subset of a graph such that every pair of vertices in the subset are connected by an edge.
*
* Time complexity: O(3^(n/3))
*/
package codebook.graph;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class BronKerbosch {
static BufferedReader br;
static PrintWriter out;
static StringTokenizer st;
static int n, m;
static boolean[][] adj;
static int[] w;
public static void main (String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
//br = new BufferedReader(new FileReader("in.txt"));
//out = new PrintWriter(new FileWriter("out.txt"));
n = readInt();
m = readInt();
adj = new boolean[n][n];
for (int i = 0; i < m; i++) {
int a = readInt();
int b = readInt();
adj[a][b] = adj[b][a] = true;
}
w = new int[n];
for (int i = 0; i < n; i++)
w[i] = readInt();
out.printf("Unweighted maximal clique: %d\n", solveUnweighted(n));
out.printf("Weighted maximal clique: %d\n", solveWeighted(n));
out.close();
}
static int solveWeighted (int nodes) {
return solveWeighted(nodes, 0, (1 << nodes) - 1, 0);
}
static int solveWeighted (int nodes, int curr, int pool, int excl) {
if (pool == 0 && excl == 0) {
int cnt = 0;
for (int i = 0; i < nodes; i++)
if ((curr & 1 << i) > 0)
cnt += w[i];
return cnt;
}
int res = 0;
int j = 0;
for (int i = 0; i < nodes; i++)
if ((pool & 1 << i) > 0 || (excl & 1 << i) > 0)
j = i;
for (int i = 0; i < nodes; i++) {
if ((pool & 1 << i) == 0 || adj[i][j])
continue;
int ncurr = curr, npool = 0, nexcl = 0;
ncurr |= 1 << i;
for (int k = 0; k < nodes; k++) {
if (adj[i][k]) {
npool |= pool & 1 << k;
nexcl |= excl & 1 << k;
}
}
res = Math.max(res, solveWeighted(nodes, ncurr, npool, nexcl));
pool &= ~(1 << i);
excl |= 1 >> i;
}
return res;
}
static int solveUnweighted (int nodes) {
return solveUnweighted(nodes, 0, (1 << nodes) - 1, 0);
}
static int solveUnweighted (int nodes, int curr, int pool, int excl) {
if (pool == 0 && excl == 0) {
int cnt = 0;
for (int i = 0; i < nodes; i++)
if ((curr & 1 << i) > 0)
cnt++;
return cnt;
}
int res = 0;
int j = 0;
for (int i = 0; i < nodes; i++)
if ((pool & 1 << i) > 0 || (excl & 1 << i) > 0)
j = i;
for (int i = 0; i < nodes; i++) {
if ((pool & 1 << i) == 0 || adj[i][j])
continue;
int ncurr = curr, npool = 0, nexcl = 0;
ncurr |= 1 << i;
for (int k = 0; k < nodes; k++) {
if (adj[i][k]) {
npool |= pool & 1 << k;
nexcl |= excl & 1 << k;
}
}
res = Math.max(res, solveUnweighted(nodes, ncurr, npool, nexcl));
pool &= ~(1 << i);
excl |= 1 >> i;
}
return res;
}
static String next () throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine().trim());
return st.nextToken();
}
static long readLong () throws IOException {
return Long.parseLong(next());
}
static int readInt () throws IOException {
return Integer.parseInt(next());
}
static double readDouble () throws IOException {
return Double.parseDouble(next());
}
static char readCharacter () throws IOException {
return next().charAt(0);
}
static String readLine () throws IOException {
return br.readLine().trim();
}
}