-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathUnscaledExample.Rmd
90 lines (72 loc) · 2.69 KB
/
UnscaledExample.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
title: "UnscaledExample"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r}
# load and prepare the data
urlBase <- 'http://www.win-vector.com/dfiles/PCA/'
pv <- read.table(paste(urlBase,'ProxyVariables.csv',sep=''),
sep=',',header=T,comment.char='')
ot <- read.table(paste(urlBase,'ObservedTemps.csv',sep=''),
sep=',',header=T,comment.char='')
keyName <- 'Year'
varNames <- setdiff(colnames(pv),keyName)
yName = setdiff(colnames(ot),keyName)
d <- merge(pv,ot,by=c(keyName))
# perform a regression on new PCA variables
pcomp <- prcomp(d[,varNames])
synthNames <- colnames(pcomp$rotation)
d <- cbind(d,
as.matrix(d[,varNames]) %*% pcomp$rotation)
f <- as.formula(paste(yName,
paste(synthNames,collapse=' + '),sep=' ~ '))
model <- step(lm(f,data=d))
# print and plot a little
print(summary(model)$r.squared)
d$pred <- predict(model,newdata=d)
library(ggplot2)
ggplot(data=d) +
geom_point(aes_string(x=keyName,y=yName)) +
geom_line(aes_string(x=keyName,y='pred'))
d$trainGroup <- d[,keyName]>=median(d[,keyName])
dTrain <- subset(d,trainGroup)
dTest <- subset(d,!trainGroup)
model <- step(lm(f,data=dTrain))
dTest$pred <- predict(model,newdata=dTest)
dTrain$pred <- predict(model,newdata=dTrain)
ggplot() +
geom_point(data=dTest,aes_string(x=keyName,y=yName)) +
geom_line(data=dTest,aes_string(x=keyName,y='pred'),color='blue',linetype=2) +
geom_point(data=dTrain,aes_string(x=keyName,y=yName)) +
geom_line(data=dTrain,aes_string(x=keyName,y='pred'),color='red',linetype=1)
rmse <- function(a,b) { sqrt(mean((a-b)^2)) }
print(rmse(dTrain[,yName],mean(dTrain[,yName])))
print(rmse(dTrain[,yName],dTrain$pred))
print(rmse(dTest[,yName],mean(dTest[,yName])))
print(rmse(dTest[,yName],dTest$pred))
pcomp <- prcomp(d[,varNames],scale.=T)
plot(pcomp)
synthNames <- colnames(pcomp$rotation)
#synthNames <- colnames(pcomp$rotation)[pcomp$sdev>1]
f <- as.formula(paste(yName,
paste(synthNames,collapse=' + '),sep=' ~ '))
d$trainGroup <- d[,keyName]>=median(d[,keyName])
dTrain <- subset(d,trainGroup)
dTest <- subset(d,!trainGroup)
model <- lm(f,data=dTrain)
dTest$pred <- predict(model,newdata=dTest)
dTrain$pred <- predict(model,newdata=dTrain)
ggplot() +
geom_point(data=dTest,aes_string(x=keyName,y=yName)) +
geom_line(data=dTest,aes_string(x=keyName,y='pred'),color='blue',linetype=2) +
geom_point(data=dTrain,aes_string(x=keyName,y=yName)) +
geom_line(data=dTrain,aes_string(x=keyName,y='pred'),color='red',linetype=1)
rmse <- function(a,b) { sqrt(mean((a-b)^2)) }
print(rmse(dTrain[,yName],mean(dTrain[,yName])))
print(rmse(dTrain[,yName],dTrain$pred))
print(rmse(dTest[,yName],mean(dTest[,yName])))
print(rmse(dTest[,yName],dTest$pred))
```