-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinterleaving_string.dart
123 lines (93 loc) · 3.01 KB
/
interleaving_string.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/*
-* 97. Interleaving String *-
Given strings s1, s2, and s3, find whether s3 is formed by an interleaving of s1 and s2.
An interleaving of two strings s and t is a configuration where s and t are divided into n and m
substrings
respectively, such that:
s = s1 + s2 + ... + sn
t = t1 + t2 + ... + tm
|n - m| <= 1
The interleaving is s1 + t1 + s2 + t2 + s3 + t3 + ... or t1 + s1 + t2 + s2 + t3 + s3 + ...
Note: a + b is the concatenation of strings a and b.
Example 1:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true
Explanation: One way to obtain s3 is:
Split s1 into s1 = "aa" + "bc" + "c", and s2 into s2 = "dbbc" + "a".
Interleaving the two splits, we get "aa" + "dbbc" + "bc" + "a" + "c" = "aadbbcbcac".
Since s3 can be obtained by interleaving s1 and s2, we return true.
Example 2:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false
Explanation: Notice how it is impossible to interleave s2 with any other string to obtain s3.
Example 3:
Input: s1 = "", s2 = "", s3 = ""
Output: true
Constraints:
0 <= s1.length, s2.length <= 100
0 <= s3.length <= 200
s1, s2, and s3 consist of lowercase English letters.
Follow up: Could you solve it using only O(s2.length) additional memory space?
*/
class A {
bool isInterleave(String s1, String s2, String s3) {
final int m = s1.length, n = s2.length, k = s3.length;
if (m + n != k) {
return false;
}
int dp1 = 1;
for (int i = 1; i <= n; i++) {
if (s2[i - 1] == s3[i - 1] && dp1 & 1 == 1) {
dp1 = (dp1 << 1) + 1;
} else {
dp1 = dp1 << 1;
}
}
for (int j = 1; j <= m; j++) {
int dp2 = 0;
if (s1[j - 1] == s3[j - 1] && dp1 & (1 << n) != 0) {
dp2 = 1;
}
for (int i = 1; i <= n; i++) {
if ((s1[j - 1] == s3[j + i - 1] && dp1 & (1 << (n - i)) != 0) ||
(s2[i - 1] == s3[j + i - 1] && dp2 & 1 == 1)) {
dp2 = (dp2 << 1) + 1;
} else {
dp2 = dp2 << 1;
}
}
dp1 = dp2;
}
return dp1 & 1 == 1;
}
}
class Solution {
bool solve(
String s1, String s2, String s3, int ind1, int ind2, List<List<int>> dp) {
if (ind1 + ind2 == s3.length) return true;
if (dp[ind1][ind2] != -1) return dp[ind1][ind2] == 1;
bool ans = false;
if (ind1 < s1.length && s1[ind1] == s3[ind1 + ind2]) {
ans |= solve(s1, s2, s3, ind1 + 1, ind2, dp);
}
if (ind2 < s2.length && s2[ind2] == s3[ind1 + ind2]) {
ans |= solve(s1, s2, s3, ind1, ind2 + 1, dp);
}
dp[ind1][ind2] = ans ? 1 : 0;
return ans;
}
bool isInterleave(String s1, String s2, String s3) {
if (s1.length + s2.length != s3.length) {
return false;
}
// int[][] dp = new int[s1.length + 1][s2.length + 1];
final List<List<int>> dp = List.filled(s1.length + 1, 0)
.map((e) => List.filled(s2.length + 1, 0))
.toList();
for (int i = 0; i <= s1.length; i++) {
// Arrays.fill(dp[i], -1);
List.filled(dp[i].length, -1);
}
return solve(s1, s2, s3, 0, 0, dp);
}
}