-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlearn2learn.py
166 lines (132 loc) · 6.32 KB
/
learn2learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/env python3
import argparse
import random
import numpy as np
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
import learn2learn as l2l
class Net(nn.Module):
def __init__(self, ways=3):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
def accuracy(predictions, targets):
predictions = predictions.argmax(dim=1)
acc = (predictions == targets).sum().float()
acc /= len(targets)
return acc.item()
def main(lr=0.005, maml_lr=0.01, iterations=3, ways=5, shots=1, tps=32, fas=5, device=torch.device("cpu"),
download_location='~/data'):
transformations = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
lambda x: x.view(1, 28, 28),
])
mnist_train = l2l.data.MetaDataset(MNIST(download_location,
train=True,
download=True,
transform=transformations))
train_tasks = l2l.data.TaskDataset(mnist_train,
task_transforms=[
l2l.data.transforms.NWays(mnist_train, ways),
l2l.data.transforms.KShots(mnist_train, 2*shots),
l2l.data.transforms.LoadData(mnist_train),
l2l.data.transforms.RemapLabels(mnist_train),
l2l.data.transforms.ConsecutiveLabels(mnist_train),
],
num_tasks=1000)
model = Net(ways)
model.to(device)
meta_model = l2l.algorithms.MAML(model, lr=maml_lr)
opt = optim.Adam(meta_model.parameters(), lr=lr)
loss_func = nn.NLLLoss(reduction='mean')
for iteration in range(iterations):
iteration_error = 0.0
iteration_acc = 0.0
for _ in range(tps):
learner = meta_model.clone()
train_task = train_tasks.sample()
data, labels = train_task
data = data.to(device)
labels = labels.to(device)
# Separate data into adaptation/evalutation sets
adaptation_indices = np.zeros(data.size(0), dtype=bool)
adaptation_indices[np.arange(shots*ways) * 2] = True
evaluation_indices = torch.from_numpy(~adaptation_indices)
adaptation_indices = torch.from_numpy(adaptation_indices)
adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices]
evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices]
# Fast Adaptation
for step in range(fas):
train_error = loss_func(learner(adaptation_data), adaptation_labels)
learner.adapt(train_error)
# Compute validation loss
predictions = learner(evaluation_data)
valid_error = loss_func(predictions, evaluation_labels)
valid_error /= len(evaluation_data)
valid_accuracy = accuracy(predictions, evaluation_labels)
iteration_error += valid_error
iteration_acc += valid_accuracy
iteration_error /= tps
iteration_acc /= tps
print('Loss : {:.3f} Acc : {:.3f}'.format(iteration_error.item(), iteration_acc))
# Take the meta-learning step
opt.zero_grad()
iteration_error.backward()
opt.step()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Learn2Learn MNIST Example')
parser.add_argument('--ways', type=int, default=5, metavar='N',
help='number of ways (default: 5)')
parser.add_argument('--shots', type=int, default=1, metavar='N',
help='number of shots (default: 1)')
parser.add_argument('-tps', '--tasks-per-step', type=int, default=32, metavar='N',
help='tasks per step (default: 32)')
parser.add_argument('-fas', '--fast-adaption-steps', type=int, default=5, metavar='N',
help='steps per fast adaption (default: 5)')
parser.add_argument('--iterations', type=int, default=1000, metavar='N',
help='number of iterations (default: 1000)')
parser.add_argument('--lr', type=float, default=0.005, metavar='LR',
help='learning rate (default: 0.005)')
parser.add_argument('--maml-lr', type=float, default=0.01, metavar='LR',
help='learning rate for MAML (default: 0.01)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--download-location', type=str, default="/tmp/mnist", metavar='S',
help='download location for train data (default : /tmp/mnist')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if use_cuda:
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda" if use_cuda else "cpu")
main(lr=args.lr,
maml_lr=args.maml_lr,
iterations=args.iterations,
ways=args.ways,
shots=args.shots,
tps=args.tasks_per_step,
fas=args.fast_adaption_steps,
device=device,
download_location=args.download_location)