Skip to content

Files

Latest commit

 

History

History

Tutorial11

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Tutorial 11: Working with Structured Data

What you'll learn

  1. Pydantic Integration:

    • Data validation and modeling
    • Type annotations
    • Schema creation
    • Custom validators
  2. Structured I/O:

    • Input validation
    • Output parsing
    • Type safety
    • Error handling
  3. JSON Processing:

    • Complex data manipulation
    • Schema validation
    • Data transformation
    • Query operations
  4. Application Integration:

    • LangChain components
    • LangGraph workflows
    • Data persistence
    • API development

Prerequisites

  • Completion of Tutorials 1-10
  • Python 3.7+
  • Groq API key

Getting Started

1. Ensure Virtual Environment is Activated

Linux/macOS:

cd langchain-langgraph-tutorial
source venv/bin/activate
cd Tutorial11

Windows:

cd langchain-langgraph-tutorial
.\venv\Scripts\activate
cd Tutorial11

2. Launch Jupyter Notebook

jupyter notebook Tutorial_11_structured_data.ipynb

Components

Core Files

  • Tutorial_11_structured_data.ipynb: Main tutorial notebook
  • utils/: Helper functions
  • examples/: Sample implementations

Key Features

Data Modeling

  • Type validation
  • Schema definition
  • Model inheritance
  • Custom validators

Data Processing

  • Input parsing
  • Output formatting
  • Error handling
  • Data transformation

Integration Tools

  • API connectivity
  • Database operations
  • State management
  • Workflow automation

Next Steps

After completing this tutorial:

  1. Build type-safe applications
  2. Implement data validation
  3. Create structured workflows
  4. Develop API integrations

Additional Resources