Skip to content

Latest commit

 

History

History
387 lines (246 loc) · 8.78 KB

Problems.md

File metadata and controls

387 lines (246 loc) · 8.78 KB

Test Functions

Bellow You'll find the definitions of all the test functions implemented in this package.

Ackley

Function name: ackley

f ( x ) = 20 e 0.2 D 1 i = 1 D x i 2 e D 1 i = 1 D cos ( 2 π x i ) + 20 + e

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Alpine 1

Function name: alpine1

f ( x ) = i = 1 D | x i sin ( x i ) + 0.1 x i |

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Alpine 2

Function name: alpine2

f ( x ) = i = 1 D x i sin ( x i )

Dimensions: D

Global optimum: f ( x ) = 2.808 D for x i = 7.917

Cigar

Function name: cigar

f ( x ) = x 1 2 + 10 6 i = 2 D x i 2

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Cosine Mixture

Function name: cosine_mixture

f ( x ) = 0.1 i = 1 D cos ( 5 π x i ) i = 1 D x i 2

Dimensions: D

Global optimum: f ( x ) = 0.1 D for x i = 0

Csendes

Function name: csendes

f ( x ) = i = 1 D x i 6 ( 2 + sin 1 x i )

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Dixon-Price

Function name: dixon_price

f ( x ) = ( x 1 1 ) 2 + i = 2 D i ( 2 x i 2 x i 1 ) 2

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 2 ( 2 i 2 ) 2 i

Griewank

Function name: griewank

f ( x ) = i = 1 D x i 2 4000 i = 1 D cos ( x i i ) + 1

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Katsuura

Function name: katsuura

i = 1 D ( 1 + i j = 1 32 | 2 j x i r o u n d ( 2 j x i ) | 2 j )

Dimensions: D

Global optimum: f ( x ) = 1 for x i = 0

Levy

Function name: levy

sin 2 ( π w 1 ) + i = 1 D 1 ( w i 1 ) 2 ( 1 + 10 sin 2 ( π w i + 1 ) ) + ( w d 1 ) 2 ( 1 + sin 2 ( 2 π w d ) ) , where   w i = 1 + x i 1 4 , for all  i = 1 , , D

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 1

Michalewicz

Function name: michalewicz

f ( x ) = i = 1 D sin ( x i ) sin 2 m ( i x i 2 π )

Dimensions: D

Global optimum: at  D = 2 , f ( x ) = 1.8013 for x = ( 2.20 , 1.57 )

Perm 1

Function name: perm1

f ( x ) = i = 1 D ( j = 1 D ( j i + β ) ( ( x j j ) i 1 ) ) 2

Dimensions: D

Global optimum: f ( x ) = 0 for x i = i

Perm 2

Function name: perm2

f ( x ) = i = 1 D ( j = 1 D ( j β ) ( x j i 1 j i ) ) 2

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 1 i

Pinter

Function name: pinter

f ( x ) = i = 1 D i x i 2 + i = 1 D 20 i sin 2 A + i = 1 D i log 10 ( 1 + i B 2 ) , where A = ( x i 1 sin ( x i ) + sin ( x i + 1 ) )   B = ( x i 1 2 2 x i + 3 x i + 1 cos ( x i ) + 1 )

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Powell

Function name: powell

f ( x ) = i = 1 D / 4 [ ( x 4 i 3 + 10 x 4 i 2 ) 2 + 5 ( x 4 i 1 x 4 i ) 2 + ( x 4 i 2 2 x 4 i 1 ) 4 + 10 ( x 4 i 3 x 4 i ) 4 ]

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Qing

Function name: qing

f ( x ) = i = 1 D ( x i 2 i ) 2

Dimensions: D

Global optimum: f ( x ) = 0 for x i = ± i

Quintic

Function name: quintic

f ( x ) = i = 1 D | x i 5 3 x i 4 + 4 x i 3 + 2 x i 2 10 x i 4 |

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 1 or x i = 2

Rastrigin

Function name: rastrigin

f ( x ) = 10 D + i = 1 D [ x i 2 10 cos ( 2 π x i ) ]

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Rosenbrock

Function name: rosenbrock

f ( x ) = i = 1 D 1 [ 100 ( x i + 1 x i 2 ) 2 + ( x i 1 ) 2 ]

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 1

Salomon

Function name: salomon

f ( x ) = 1 cos ( 2 π i = 1 D x i 2 ) + 0.1 i = 1 D x i 2

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Schaffer 2

Function name: schaffer2

f ( x ) = 0.5 + sin 2 ( x 1 2 x 2 2 ) 0.5 [ 1 + 0.001 ( x 1 2 + x 2 2 ) ] 2

Dimensions: 2

Global optimum: f ( x ) = 0 for x = ( 0 , 0 )

Schaffer 4

Function name: schaffer4

f ( x ) = 0.5 + cos 2 ( sin ( | x 1 2 x 2 2 | ) ) 0.5 [ 1 + 0.001 ( x 1 2 + x 2 2 ) ] 2

Dimensions: 2

Global optimum: f ( x ) = 0.292579 for x = ( 0 , ± 1.25313 ) or ( ± 1.25313 , 0 )

Schwefel

Function name: schwefel

f ( x ) = 418.9829 D i = 1 D x i sin ( | x i | )

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 420.9687

Schwefel 2.21

Function name: schwefel221

f ( x ) = max 1 i D | x i |

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Schwefel 2.22

Function name: schwefel222

f ( x ) = i = 1 D | x i | + i = 1 D | x i |

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Sphere

Function name: sphere

f ( x ) = i = 1 D x i 2

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Step

Function name: step

f ( x ) = i = 1 D ( | x i | )

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Step 2

Function name: step2

f ( x ) = i = 1 D ( x i + 0.5 ) 2

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0.5

Styblinski-Tang

Function name: styblinski_tang

$$$$

Dimensions: D

Global optimum: f ( x ) = 39.16599 D for x i = 2.903534

Trid

Function name: trid

f ( x ) = i = 1 D ( x i 1 ) 2 i = 2 D x i x i 1

Dimensions: D

Global optimum: f ( x ) = D ( D + 4 ) ( D 1 ) 6 for x i = i ( d + 1 i )

Weierstrass

Function name: weierstrass

f ( x ) = i = 1 D [ k = 0 k m a x a k cos ( 2 π b k ( x i + 0.5 ) ) ] D k = 0 k m a x a k cos ( π b k )

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

Whitley

Function name: whitley

f ( x ) = i = 1 D j = 1 D [ ( 100 ( x i 2 x j ) 2 + ( 1 x j ) 2 ) 2 4000 cos ( 100 ( x i 2 x j ) 2 + ( 1 x j ) 2 ) + 1 ]

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 1

Zakharov

Function name: zakharov

f ( x ) = i = 1 D x i 2 + ( i = 1 D 0.5 i x i ) 2 + ( i = 1 D 0.5 i x i ) 4

Dimensions: D

Global optimum: f ( x ) = 0 for x i = 0

References

[1] P. Ernesto and U. Diliman, “MVF–Multivariate Test Functions Library in C for Unconstrained Global Optimization,” University of the Philippines Diliman, Quezon City, 2005.

[2] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions for global optimisation problems,” International Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, no. 2, p. 150, Jan. 2013, doi: 10.1504/ijmmno.2013.055204.

[3] J. J. Liang, B. Y. Qu, and P. N. Suganthan, “Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization,” Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, vol. 635, no. 2, 2013.

[4] S. Surjanovic and D. Bingham, Virtual Library of Simulation Experiments: Test Functions and Datasets. Retrieved November 7, 2023, from https://www.sfu.ca/~ssurjano/.