-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy path2.java
137 lines (108 loc) · 3.5 KB
/
2.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*
The Computer Language Benchmarks Game
https://salsa.debian.org/benchmarksgame-team/benchmarksgame/
Based on C# entry by Isaac Gouy
contributed by Jarkko Miettinen
Parallel by The Anh Tran
*/
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.concurrent.CyclicBarrier;
final class app {
private static final NumberFormat formatter = new DecimalFormat("#.000000000");
public static void main(String[] args) {
int n = 1000;
if (args.length > 0) n = Integer.parseInt(args[0]);
System.out.println(formatter.format(spectralnormGame(n)));
}
private static final double spectralnormGame(int n) {
// create unit vector
double[] u = new double[n];
double[] v = new double[n];
double[] tmp = new double[n];
for (int i = 0; i < n; i++) u[i] = 1.0;
// get available processor, then set up syn object
int nthread = Runtime.getRuntime().availableProcessors();
Approximate.barrier = new CyclicBarrier(nthread);
int chunk = n / nthread;
Approximate[] ap = new Approximate[nthread];
for (int i = 0; i < nthread; i++) {
int r1 = i * chunk;
int r2 = (i < (nthread - 1)) ? r1 + chunk : n;
ap[i] = new Approximate(u, v, tmp, r1, r2);
}
double vBv = 0, vv = 0;
for (int i = 0; i < nthread; i++) {
try {
ap[i].join();
vBv += ap[i].m_vBv;
vv += ap[i].m_vv;
} catch (Exception e) {
e.printStackTrace();
}
}
return Math.sqrt(vBv / vv);
}
private static class Approximate extends Thread {
private static CyclicBarrier barrier;
private double[] _u;
private double[] _v;
private double[] _tmp;
private int range_begin, range_end;
private double m_vBv = 0, m_vv = 0;
public Approximate(double[] u, double[] v, double[] tmp, int rbegin, int rend) {
super();
_u = u;
_v = v;
_tmp = tmp;
range_begin = rbegin;
range_end = rend;
start();
}
public void run() {
// 20 steps of the power method
for (int i = 0; i < 10; i++) {
MultiplyAtAv(_u, _tmp, _v);
MultiplyAtAv(_v, _tmp, _u);
}
for (int i = range_begin; i < range_end; i++) {
m_vBv += _u[i] * _v[i];
m_vv += _v[i] * _v[i];
}
}
/* return element i,j of infinite matrix A */
private static final double eval_A(int i, int j) {
int div = (((i + j) * (i + j + 1) >>> 1) + i + 1);
return 1.0 / div;
}
/* multiply vector v by matrix A, each thread evaluate its range only */
private final void MultiplyAv(final double[] v, double[] Av) {
for (int i = range_begin; i < range_end; i++) {
double sum = 0;
for (int j = 0; j < v.length; j++) sum += eval_A(i, j) * v[j];
Av[i] = sum;
}
}
/* multiply vector v by matrix A transposed */
private final void MultiplyAtv(final double[] v, double[] Atv) {
for (int i = range_begin; i < range_end; i++) {
double sum = 0;
for (int j = 0; j < v.length; j++) sum += eval_A(j, i) * v[j];
Atv[i] = sum;
}
}
/* multiply vector v by matrix A and then by matrix A transposed */
private final void MultiplyAtAv(final double[] v, double[] tmp, double[] AtAv) {
try {
MultiplyAv(v, tmp);
// all thread must syn at completion
barrier.await();
MultiplyAtv(tmp, AtAv);
// all thread must syn at completion
barrier.await();
} catch (Exception e) {
e.printStackTrace();
}
}
}
}