-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy path3.cs
145 lines (120 loc) · 3.88 KB
/
3.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/* The Computer Language Benchmarks Game
https://salsa.debian.org/benchmarksgame-team/benchmarksgame/
contributed by Isaac Gouy
modified by Josh Goldfoot, based on the Java version by The Anh Tran
*/
using System;
using System.Threading;
using System.Threading.Tasks;
namespace SpectralNorms
{
class SpectralNorm
{
public static void Main(String[] args)
{
int n = 100;
if (args.Length > 0) n = Int32.Parse(args[0]);
Console.WriteLine("{0:f9}", spectralnormGame(n));
}
private static double spectralnormGame(int n)
{
double[] u = new double[n];
double[] v = new double[n];
double[] tmp = new double[n];
// create unit vector
for (int i = 0; i < n; i++)
u[i] = 1.0;
int nthread = Environment.ProcessorCount;
int chunk = n / nthread;
var barrier = new Barrier(nthread);
Approximate[] ap = new Approximate[nthread];
for (int i = 0; i < nthread; i++)
{
int r1 = i * chunk;
int r2 = (i < (nthread - 1)) ? r1 + chunk : n;
ap[i] = new Approximate(u, v, tmp, r1, r2, barrier);
}
double vBv = 0, vv = 0;
for (int i = 0; i < nthread; i++)
{
ap[i].t.Wait();
vBv += ap[i].m_vBv;
vv += ap[i].m_vv;
}
return Math.Sqrt(vBv / vv);
}
}
public class Approximate
{
private Barrier barrier;
public Task t;
private double[] _u;
private double[] _v;
private double[] _tmp;
private int range_begin, range_end;
public double m_vBv, m_vv;
public Approximate(double[] u, double[] v, double[] tmp, int rbegin, int rend, Barrier b)
{
m_vBv = 0;
m_vv = 0;
_u = u;
_v = v;
_tmp = tmp;
range_begin = rbegin;
range_end = rend;
barrier = b;
t = Task.Run(() => run());
}
private void run()
{
// 20 steps of the power method
for (int i = 0; i < 10; i++)
{
MultiplyAtAv(_u, _tmp, _v);
MultiplyAtAv(_v, _tmp, _u);
}
for (int i = range_begin; i < range_end; i++)
{
m_vBv += _u[i] * _v[i];
m_vv += _v[i] * _v[i];
}
}
/* return element i,j of infinite matrix A */
private double eval_A(int i, int j)
{
return 1.0 / ((i + j) * (i + j + 1) / 2 + i + 1);
}
/* multiply vector v by matrix A, each thread evaluate its range only */
private void MultiplyAv(double[] v, double[] Av)
{
for (int i = range_begin; i < range_end; i++)
{
double sum = 0;
for (int j = 0; j < v.Length; j++)
sum += eval_A(i, j) * v[j];
Av[i] = sum;
}
}
/* multiply vector v by matrix A transposed */
private void MultiplyAtv(double[] v, double[] Atv)
{
for (int i = range_begin; i < range_end; i++)
{
double sum = 0;
for (int j = 0; j < v.Length; j++)
sum += eval_A(j, i) * v[j];
Atv[i] = sum;
}
}
/* multiply vector v by matrix A and then by matrix A transposed */
private void MultiplyAtAv(double[] v, double[] tmp, double[] AtAv)
{
MultiplyAv(v, tmp);
// all thread must syn at completion
barrier.SignalAndWait();
MultiplyAtv(tmp, AtAv);
// all thread must syn at completion
barrier.SignalAndWait();
}
}
}