This repository was archived by the owner on Nov 1, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathOrdMap.hs
163 lines (129 loc) · 4.68 KB
/
OrdMap.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
module OrdMap(
OrdMap,
empty, singleton, union, unionMany, add, (//),
-- addKeep, union_C, unionMany_C, addMany_C, add_C,
-- intersect, delete, deleteMany, minus,
-- partition, filter, foldl, foldr
toList, fromList,
length,
null, isSingleton,
-- intersecting, subset
elems, indices,
--(!),
lookup, lookupWithDefault --, lookupWithContinuation
) where
--@@ Finite mappings with ordered keys.
-- Red-Black trees.
-- Implementation based on work by Norris Boyd, Andrew W. Appel,
-- David R. Tarditi, and Stephen J. Bevan.
data Colour = Red | Black
data OrdMap a b
= Empty
| Node a b Colour (OrdMap a b) (OrdMap a b)
instance (Ord a, Show a, Show b) => Show (OrdMap a b) where
showsType x = showString "(OrdMap " . showsType (f x) . showString " " . showsType (g x) . showString ")"
where f :: (Ord a) => OrdMap a b -> a
f _ = error "OrdMap.f"
g :: (Ord a) => OrdMap a b -> b
g _ = error "OrdMap.g"
instance (Ord a, Eq b) => Eq (OrdMap a b) where
x == y = toList x == toList y
rbiR :: a -> b -> OrdMap a b -> OrdMap a b -> OrdMap a b
rbiR k v (Node sk sv Red sl@(Node _ _ Red _ _) sr) (Node lk lv Red ll lr) =
Node k v Red (Node lk lv Black ll lr) (Node sk sv Black sl sr)
rbiR k v (Node sk sv Red sl sr@(Node _ _ Red _ _)) (Node lk lv Red ll lr) =
Node k v Red (Node lk lv Black ll lr) (Node sk sv Black sl sr)
rbiR k v (Node sk sv Red sl@(Node slk slv Red sll slr) sr) l =
Node slk slv Black (Node k v Red l sll) (Node sk sv Red slr sr)
rbiR k v (Node sk sv Red sl sr@(Node _ _ Red _ _)) l =
Node sk sv Black (Node k v Red l sl) sr
rbiR k v t l = Node k v Black l t
rbiL :: a -> b -> OrdMap a b -> OrdMap a b -> OrdMap a b
rbiL k v (Node lk lv Red ll lr@(Node _ _ Red _ _)) (Node rk rv Red rl rr) =
Node k v Red (Node lk lv Black ll lr) (Node rk rv Black rl rr)
rbiL k v (Node lk lv Red ll@(Node _ _ Red _ _) lr) (Node rk rv Red rl rr) =
Node k v Red (Node lk lv Black ll lr) (Node rk rv Black rl rr)
rbiL k v (Node lk lv Red ll lr@(Node lrk lrv Red lrl lrr)) r =
Node lrk lrv Black (Node lk lv Red ll lrl) (Node k v Red lrr r)
rbiL k v (Node lk lv Red ll@(Node llk llv Red lll llr) lr) r =
Node lk lv Black ll (Node k v Red lr r)
rbiL k v t r = Node k v Black t r
rbi :: (Ord a) => a -> b -> OrdMap a b -> OrdMap a b
rbi e v Empty = Node e v Red Empty Empty
rbi e v t@(Node k w Black l r) =
if e <= k then
if e == k then
Node e v Black l r
else
rbiL k w (rbi e v l) r
else
rbiR k w (rbi e v r) l
rbi e v t@(Node k w Red l r) =
if e <= k then
if e == k then
Node e v Red l r
else
Node k w Red (rbi e v l) r
else
Node k w Red l (rbi e v r)
-- Empty table.
empty :: OrdMap a b
empty = Empty
singleton :: (Ord a) => (a, b) -> OrdMap a b
singleton (k, v) = Node k v Black Empty Empty
null :: OrdMap a b -> Bool
null Empty = True
null _ = False
length :: OrdMap a b -> Int
length Empty = 0
length (Node _ _ _ l r) = 1 + length l + length r
isSingleton :: OrdMap a b -> Bool
isSingleton (Node _ _ _ Empty Empty) = True
isSingleton _ = False
elems :: OrdMap a b -> [b]
elems Empty = []
elems (Node k v _ l r) = elems l ++ v : elems r
indices :: OrdMap a b -> [a]
indices Empty = []
indices (Node k v _ l r) = indices l ++ k : indices r
union :: (Ord a) => OrdMap a b -> OrdMap a b -> OrdMap a b
union t1 t2 = union' t1 (toList t2)
union' t [] = t
union' t (xy:xys) = union' (add xy t) xys
unionMany :: (Ord a) => [OrdMap a b] -> OrdMap a b
unionMany = foldr union empty
-- Insert an element overwriting an existing one with the same key.
add :: (Ord a) => (a, b) -> OrdMap a b -> OrdMap a b
add (e, v) t =
case rbi e v t of
Node k v Red l@(Node _ _ Red _ _) r -> Node k v Black l r
Node k v Red l r@(Node _ _ Red _ _) -> Node k v Black l r
x -> x
(//) :: (Ord a) => OrdMap a b -> [(a, b)] -> OrdMap a b
t // [] = t
t // (xy:xys) = add xy t // xys
-- Look up an element.
lookup :: (Ord a) => a -> OrdMap a b -> Maybe b
lookup _ Empty = Nothing
lookup e (Node k v _ l r) =
if e <= k then
if e == k then Just v
else lookup e l
else lookup e r
-- Map a function over the values.
instance (Ord a) => Functor (OrdMap a) where
--map :: (b->c) -> OrdMap a b -> OrdMap a c
map f Empty = Empty
map f (Node k v c l r) = Node k (f v) c (map f l) (map f r)
lookupWithDefault :: (Ord a) => OrdMap a b -> b -> a -> b
lookupWithDefault Empty d _ = d
lookupWithDefault (Node k v _ l r) d e =
if e <= k then
if e == k then v
else lookupWithDefault l d e
else lookupWithDefault r d e
fromList :: (Ord a) => [(a,b)] -> OrdMap a b
fromList l = union' empty l
toList :: OrdMap a b -> [(a, b)]
toList Empty = []
toList (Node k v _ l r) = toList l ++ (k,v) : toList r