-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_eval_gpu.sh
executable file
·55 lines (28 loc) · 1.17 KB
/
train_eval_gpu.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/bin/sh
OBJECT_DETECTION_FOLDER="/home/yoda/Desktop/Joydeep/models/research/object_detection"
# echo "Exporting Slim Folder"
# export PYTHONPATH=$PYTHONPATH:${OBJECT_DETECTION_FOLDER}/slim
# Install Slim
TRAIN_DIR="/home/yoda/Desktop/Joydeep/models/research/cards-detection/model/train"
VAL_DIR="/home/yoda/Desktop/Joydeep/models/research/cards-detection/model/val"
PIPELINE_CONFIG_PATH="/home/yoda/Desktop/Joydeep/models/research/cards-detection/data/faster_rcnn_resnet50.config"
echo "Training Job..."
nvidia-smi
####################### TRAINING ################################
nohup python src/train.py \
--logtostderr \
--train_dir=${TRAIN_DIR} \
--gpu_fraction=0.65 \
--save_summaries_secs=10 \
--save_interval_secs=10 \
--pipeline_config_path=${PIPELINE_CONFIG_PATH} > trainlog.out &
sleep 2m
echo "Evaluation on GPU"
##################### Simultaneously Evaluate on same GPU ######################
nohup python src/eval.py \
--logtostderr \
--checkpoint_dir=${TRAIN_DIR} \
--eval_dir=${VAL_DIR} \
--pipeline_config_path=${PIPELINE_CONFIG_PATH} > evallog.out &
echo "Tensorboard http://localhost:6006"
nohup tensorboard --logdir model/ > tensorboard.out &