-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathgan.py
executable file
·189 lines (159 loc) · 7.39 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
from skimage.io import imsave
import os
import shutil
import time
img_height = 28
img_width = 28
img_size = img_height * img_width
to_train = True
to_restore = False
output_path = "output"
max_epoch = 1000
h1_size = 150
h2_size = 300
z_size = 100
batch_size = 256
seq_size=4
n_hidden=300
tr_data_num=60000;
g_num_layers=2;
d_num_layers=2;
log_dir="/tmp/gan_seq/"+str(int(time.time()))
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
#tf.summary.histogram('histogram', var)
def build_generator(z_prior,keep_prob):
z_prior=tf.unstack(z_prior,seq_size,1);
lstm_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.BasicLSTMCell(n_hidden), output_keep_prob=keep_prob)for _ in range(g_num_layers)]);
with tf.variable_scope("gen") as gen:
res, states = tf.contrib.rnn.static_rnn(lstm_cell, z_prior,dtype=tf.float32);
weights=tf.Variable(tf.random_normal([n_hidden, img_size]));
biases=tf.Variable(tf.random_normal([img_size]));
for i in range(len(res)):
res[i]=tf.nn.tanh(tf.matmul(res[i], weights) + biases);
g_params=[v for v in tf.global_variables() if v.name.startswith(gen.name)];
with tf.name_scope("gen_params"):
for param in g_params:
variable_summaries(param);
return res,g_params;
def build_discriminator(x_data, x_generated, keep_prob):
x_data=tf.unstack(x_data,seq_size,1);
x_generated=list(x_generated);
x_in = tf.concat([x_data, x_generated],1);
x_in=tf.unstack(x_in,seq_size,0);
lstm_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.BasicLSTMCell(n_hidden), output_keep_prob=keep_prob) for _ in range(d_num_layers)]);
with tf.variable_scope("dis") as dis:
weights=tf.Variable(tf.random_normal([n_hidden, 1]));
biases=tf.Variable(tf.random_normal([1]));
outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x_in, dtype=tf.float32);
res=tf.matmul(outputs[-1], weights) + biases;
y_data = tf.nn.sigmoid(tf.slice(res, [0, 0], [batch_size, -1], name=None));
y_generated = tf.nn.sigmoid(tf.slice(res, [batch_size, 0], [-1, -1], name=None));
d_params=[v for v in tf.global_variables() if v.name.startswith(dis.name)];
with tf.name_scope("desc_params"):
for param in d_params:
variable_summaries(param);
return y_data, y_generated, d_params;
def show_result(batch_res, fname, grid_size=(8, 8), grid_pad=5):
batch_res = 0.5 * batch_res.reshape((batch_res.shape[0], img_height, img_width)) + 0.5
img_h, img_w = batch_res.shape[1], batch_res.shape[2]
grid_h = img_h * grid_size[0] + grid_pad * (grid_size[0] - 1)
grid_w = img_w * grid_size[1] + grid_pad * (grid_size[1] - 1)
img_grid = np.zeros((grid_h, grid_w), dtype=np.uint8)
for i, res in enumerate(batch_res):
if i >= grid_size[0] * grid_size[1]:
break
img = (res) * 255
img = img.astype(np.uint8)
row = (i // grid_size[0]) * (img_h + grid_pad)
col = (i % grid_size[1]) * (img_w + grid_pad)
img_grid[row:row + img_h, col:col + img_w] = img
imsave(fname, img_grid)
def train():
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
total_tr_data, total_tr_label = mnist.train.next_batch(mnist.train._num_examples);
total_tr_data=np.array(total_tr_data,dtype=float);
total_tr_label=np.array(total_tr_label,dtype=float);
tr_data=np.zeros((tr_data_num,seq_size,img_size),dtype=object);
for i in range(seq_size):
total_idx=np.where(total_tr_label[:,i]==1.0)[0];
while(len(total_idx)<tr_data_num):
total_idx=np.append(total_idx,total_idx);
np.random.shuffle(total_idx);selected_idx=total_idx[:tr_data_num];
tr_data[:,i,:]=total_tr_data[selected_idx];
x_data = tf.placeholder(tf.float32, [None, seq_size, img_size], name="x_data")
z_prior = tf.placeholder(tf.float32, [None, seq_size, z_size], name="z_prior")
keep_prob = tf.placeholder(tf.float32, name="keep_prob")
global_step = tf.Variable(0, name="global_step", trainable=False)
x_generated, g_params = build_generator(z_prior,keep_prob);
y_data, y_generated, d_params = build_discriminator(x_data, x_generated, keep_prob)
d_loss = - (tf.log(y_data) + tf.log(1 - y_generated))
g_loss = - tf.log(y_generated)
optimizer_g = tf.train.AdamOptimizer(0.0001)
optimizer_d = tf.train.AdamOptimizer(0.00001)
#optimizer_d = tf.train.AdamOptimizer(0.000001)
d_trainer = optimizer_d.minimize(d_loss, var_list=d_params)
g_trainer = optimizer_g.minimize(g_loss, var_list=g_params)
# tensorboard
tf.summary.scalar('desc_loss',tf.reduce_sum(d_loss));
tf.summary.scalar('gen_loss',tf.reduce_sum(g_loss));
merged=tf.summary.merge_all()
writer=tf.summary.FileWriter(log_dir)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
sess = tf.Session()
sess.run(init)
if to_restore:
chkpt_fname = tf.train.latest_checkpoint(output_path)
saver.restore(sess, chkpt_fname)
else:
if os.path.exists(output_path):
shutil.rmtree(output_path)
os.mkdir(output_path)
z_sample_val = np.random.normal(0, 1, size=(batch_size, seq_size, z_size)).astype(np.float32)
z_sample_val[:,1:,:]=0.0;
for i in range(sess.run(global_step), max_epoch):
for j in range(tr_data_num / batch_size):
print "epoch:%s, iter:%s" % (i, j)
x_value = tr_data[j*batch_size:(j+1)*batch_size];
x_value = 2 * x_value.astype(np.float32) - 1
z_value = np.random.normal(0, 1, size=(batch_size, seq_size, z_size)).astype(np.float32)
z_value[:,1:,:]=0.0;
sess.run(d_trainer,
feed_dict={x_data: x_value, z_prior: z_value, keep_prob: np.sum(0.7).astype(np.float32)})
if j % 1 == 0:
summary,_=sess.run([merged,g_trainer],
feed_dict={x_data: x_value, z_prior: z_value, keep_prob: np.sum(0.7).astype(np.float32)})
writer.add_summary(summary,(i*(tr_data_num/batch_size)+j))
for j in range(seq_size):
x_gen_val = sess.run(x_generated[j], feed_dict={z_prior: z_sample_val,keep_prob:np.sum(0.7).astype(np.float32)})
show_result(x_gen_val, "output/sample"+str(i)+"_"+str(j)+".jpg")
sess.run(tf.assign(global_step, i + 1))
def test():
z_prior = tf.placeholder(tf.float32, [batch_size, z_size], name="z_prior")
x_generated, _ = build_generator(z_prior)
chkpt_fname = tf.train.latest_checkpoint(output_path)
init = tf.initialize_all_variables()
sess = tf.Session()
saver = tf.train.Saver()
sess.run(init)
saver.restore(sess, chkpt_fname)
z_test_value = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32)
x_gen_val = sess.run(x_generated, feed_dict={z_prior: z_test_value})
show_result(x_gen_val, "output/test_result.jpg")
if __name__ == '__main__':
if to_train:
train()
else:
test()