-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathminimum_path_sum.go
97 lines (76 loc) · 1.75 KB
/
minimum_path_sum.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/*
64. Minimum Path Sum
source: https://leetcode.com/problems/minimum-path-sum/
Description
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
*/
package minimumpathsum
// recursion dfs
/*
func minPathSum(grid [][]int) int {
if len(grid) == 0{
return 0
}
MaxUint:= ^uint(0)
MaxInt := int(MaxUint >> 1)
result := MaxInt
dfs(0,0,0, grid, &result)
return result
}
func dfs(x int, y int, sum int, grid [][]int, result *int) {
m := len(grid)
n := len(grid[0])
sum += grid[x][y]
if x+1 < m && y+1 < n {
dfs(x+1, y, sum, grid, result)
dfs(x, y+1, sum, grid, result)
}
if x +1 == m && y+1 < n {
dfs(x, y+1, sum, grid, result)
}
if y+1 == n && x+1 < m {
dfs(x+1, y, sum, grid, result)
}
if x+1 == m && y+1 == n {
if sum < *result {
*result = sum
}
return
}
}*/
// dynamic programming
func minPathSum(grid [][]int) int {
if len(grid) == 0 {
return 0
}
m := len(grid)
n := len(grid[0])
dp := make([][]int, m)
dp[0] = append(dp[0], grid[0][0])
for i := 1; i < m; i++ {
dp[i] = append(dp[i], grid[i][0]+dp[i-1][0])
}
for i := 1; i < n; i++ {
dp[0] = append(dp[0], grid[0][i]+dp[0][i-1])
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
if dp[i-1][j] < dp[i][j-1] {
dp[i] = append(dp[i], grid[i][j]+dp[i-1][j])
} else {
dp[i] = append(dp[i], grid[i][j]+dp[i][j-1])
}
}
}
return dp[m-1][n-1]
}