-
Notifications
You must be signed in to change notification settings - Fork 490
/
Copy pathdiscrete_and_continuous.jl
1854 lines (1506 loc) · 71 KB
/
discrete_and_continuous.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.19.45
#> [frontmatter]
#> chapter = 2
#> video = "https://www.youtube.com/watch?v=H6Dcx3YeTkE"
#> image = "https://user-images.githubusercontent.com/6933510/136196552-ce16c06f-bd12-427f-80e5-aedb1fbc734a.png"
#> section = 7
#> order = 7
#> title = "Discrete and Continuous"
#> layout = "layout.jlhtml"
#> youtube_id = "H6Dcx3YeTkE"
#> description = ""
#> tags = ["lecture", "module2", "track_math", "discrete", "continuous"]
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ d155ea12-9628-11eb-347f-7754a33fd403
using Plots, PlutoUI, HypertextLiteral, Graphs, GraphPlot, Printf, SpecialFunctions
# ╔═╡ 01506de2-918a-11eb-2a4d-c554a6e54631
TableOfContents()
# ╔═╡ 877deb2c-702b-457b-a54b-f27c277928d4
md"""
## Julia concepts
- printing using css fancy stuff (not really julia)
## pedagogical concepts
- curiosity based learning
- bridging what is often two different communities
"""
# ╔═╡ ee349b52-9189-11eb-2b86-b5dc15ebe432
md"""
### Discrete and Continuous
"""
# ╔═╡ 43e39a6c-918a-11eb-2408-93563b4fb8c1
md"""
An exact technical definition of discrete and continuous can be difficult,
Nonetheless the idea of discrete mathematics is associated with finite or countably many values that are isolated. The set {1,...,n} and the integers are both discrete sets.
"""
# ╔═╡ 719a4c8c-9615-11eb-3dd7-7fb786f7fa17
md"""
DISCRETE MATH OBJECTS (examples):
1. Finite Sets: [1,2,...,100]
2. Infinite Discrete Sets: ``\mathbb{Z}`` = integers = ``\{\ldots,-2,-1,0,1,2,\ldots\}``
3. Graphs:
"""
# ╔═╡ 45ecee7e-970e-11eb-22fd-01f56876684e
gplot( barabasi_albert(150, 2) )
# ╔═╡ 52fa7f18-757a-4bf5-b851-32a1fca9c378
# ╔═╡ 61ffe0f2-9615-11eb-37d5-f9e30a31c111
md"""
By contrast, entire intervals or the whole real line is associated with continuous mathematics.
In fact, mathematicians have worked painstakingly to define these terms, inventing fields such as point set topology that among other things can recognize the discrete, and analysis to rigorously work with the continuous.
"""
# ╔═╡ 627f6db6-9617-11eb-0453-a1f9e341ecfe
md"""
**Continuous real line:**

"""
# ╔═╡ 091a8a44-918c-11eb-2ee3-9be84a311afd
md"""
### Heard in the hallways: I only like discrete math. I only like continuous math.
"""
# ╔═╡ 5c536430-9188-11eb-229c-e7feba62d257
md"""
### Indexing and Function Evaluation
Analogy: ``v_i`` (ith element of v) vs. $f(x)$ (evaluate f at x):
These are different, right?
In the one you are extracting an element, and in the other you are applying what in some high schools might be called a "function machine."
However, a moment's thought tells you that a vector is really a discrete function, in that the argument can take on the values i = 1,2,...,n and the evaluation is $v_i$. That's a function.
In fact, think of a range object such as 2:2:20. You could think of this as just a shorthand for the vector [2,4,...,20] but in fact when you index into this "vector" like thing, you are indeed explicitly evaluating a function i.e. i->2i.
"""
# ╔═╡ 1e8ea849-40b7-41fd-b17f-cd2d991d5c24
[2:2:20;] # this expands the "iterator" into an ordinary vector
# ╔═╡ 679a39ee-99a5-4211-9adc-8296d499e37e
[2:2:20;][7] # Extracts an element from Memory (of course there is an address calculation)
# ╔═╡ 2c64f98d-dc84-4fa5-81ce-25b319ff9583
(2:2:20)[7] # Compute 2*7 (more or less)
# ╔═╡ 0a379cae-386d-4daa-ab6f-9d0424c1cdc1
begin
f(x)=2x
f(7) # Compute 2*7
end
# ╔═╡ 890c0fa2-c247-4f14-84f6-2bed69d0f0c5
md"""
Any which way $v$ is a function "machine" whose input is $\{1,2,3,4,5,6,7,8,9,10\}$
"""
# ╔═╡ 68b60d09-acee-48d8-8bb1-7ab4faa6b785
gr()
# ╔═╡ 40095ad2-961f-11eb-1f23-83d1a381ace7
md"""
### Area
"""
# ╔═╡ ed71b026-9565-11eb-1058-d77efe114562
md"""
Area of a circle using regular polygons:
"""
# ╔═╡ 3b84bb0a-9566-11eb-1c1f-e30ca7330c09
md"""
n = $(@bind sides Slider(3:100, show_value=true, default=6))
"""
# ╔═╡ f20da096-9712-11eb-2a67-cd33f6ab8750
area(s) = (s/2) * sin(2π/s)
# ╔═╡ 02784976-9566-11eb-125c-a7f1f1bafd6b
begin
θ = (0:.01:1)*2π
plot( cos.(θ),sin.(θ), ratio=1, axis=false, legend=false, ticks=false, lw=4, color=:black, fill=false)
plot!( cos.(θ),sin.(θ), ratio=1, axis=false, legend=false, ticks=false, lw=4, color=:white, fill=true, alpha=.6)
ϕ = (0:sides)*2π/sides
for i=1:sides
plot!( Shape( [0,cos(ϕ[i]),cos(ϕ[i+1])],[0,sin(ϕ[i]),sin(ϕ[i+1])]), fill=true,lw=0)
end
title!("Area = ($sides/2)sin(2π/$sides) ≈ $(area(sides)/π ) π")
end
# ╔═╡ 6fd93018-c33b-4682-91c3-7a20a41d9b03
area0 = area.( 2 .^ (2:10) ) # Area of polygons with # sides = [4, 8, ..., 1024]
# ╔═╡ a306559f-e095-4f6d-94e8-b0be160e77fa
π
# ╔═╡ ea29e286-4b4a-4291-a093-cd942ba46e49
md"""
A carefully chosen convolution: [-1/3,4/3]
"""
# ╔═╡ 103c93ae-8175-4996-ab8f-5d537691defc
area1 = [ 4/3 * area0[i+1] .- 1/3 * area0[i] for i = 1:length(area0)-1 ]
# ╔═╡ 686904c9-1cc4-4476-860b-159e56471e38
function colorgoodbad(should_be, given)
indexofmistake = something(
findfirst(collect(should_be) .!== collect(given)),
length(given)+1,
)
@htl("""
<span style="color: inherit">$(given[1:indexofmistake-1])</span><span style="color: red">$(given[indexofmistake:end])</span>
""")
end
# ╔═╡ bcfd1585-8161-43a2-8b19-ed654df2e0e1
colorgoodbad(string(float(π)) , string(22/7))
# ╔═╡ a76ac67b-27b9-4e2b-9fca-61480dca5264
area2 = [16/15 * area1[i+1] .- 1/15 * area1[i] for i = 1:length(area1)-1 ]
# ╔═╡ c742742a-765b-4eb5-bd65-dc0cd6328255
md"""
Another carefully chosen convolution: [-1/15,16/15], do you see the pattern?
"""
# ╔═╡ 5273fe09-fe38-4c88-b84a-51af17cff906
big(π)
# ╔═╡ 4dd03325-2498-4fe7-9212-f964081a0300
area3 = [64/63 * area2[i+1] .- 1/63 * area2[i] for i = 1:length(area2)-1 ]
# ╔═╡ 626242ea-544c-49fc-9884-c70dd6800902
area4 = [128/127 * area3[i+1] .- 1/127 * area3[i] for i = 1:length(area3)-1 ]
# ╔═╡ dbccc2d5-c2af-48c4-8726-a95c09da78ae
md"""
Why does this work?
"""
# ╔═╡ 82a407b6-0ecb-4011-a0f6-bc9e1f51393f
md"""
Area(s) = ``(s/2) \sin (2\pi/s) = \pi- \frac{2\pi^3}{3} s^{-2} + \frac{2\pi^5}{15}s^{-4} - \frac{4\pi^7}{315} s^{-6} + \ldots``
as `` s \rightarrow \infty ``.
"""
# ╔═╡ 5947dc80-9714-11eb-389d-1510a1137a50
md"""
Area(s) = `` \pi - c_1 /s^2 + c_2 / s^4 - \ldots``
Area(2s) = `` \pi - c_1 /(4s^2) + c_2 / (16s^4) - \ldots``
"""
# ╔═╡ db8121ec-8546-4f1e-8153-cff5b4df39df
md"""
Think about taking (4/3) Area(2s) - (1/3) Area(s).
Now we have
``\pi + c s^{-4}`` as the leading term so doubling the s approximately reduces the area error by 16, when before it was only 4. etc.
"""
# ╔═╡ d4f83a20-62cf-47f1-a622-d5c4c34e4813
areab(s) = (s/2) * sin(big(2)*big(π)/s)
# ╔═╡ 01631c38-9713-11eb-30bf-3d23cf0d3dc8
begin
area0b = areab.(big.([2,4,8,16,32,62,128,256,512,1024,2048,4096,8192,16384,32768,65536]))
colorgoodbad( (@sprintf "%.80f" big(π)) , (@sprintf "%.80f" big(area0b[end])))
end
# ╔═╡ 553bdb0a-9714-11eb-1646-413a969d6884
begin
area1b = [ 4//3 * area0b[i+1] .- 1//3 * area0b[i] for i = 1:length(area0b)-1 ]
colorgoodbad( (@sprintf "%.80f" big(π)) , (@sprintf "%.80f" big(area1b[end])))
end
# ╔═╡ fa3a8baf-d86d-45c3-b4ba-85198bd0677d
string(area1b[end])
# ╔═╡ 8bcd29e2-41db-4969-9932-3cc56edfdc18
colorgoodbad( (@sprintf "%.30f" big(π)) , (@sprintf "%.30f" big(area1b[end])))
# ╔═╡ 453f2585-157d-490a-9d1c-0b02939d0a11
begin
area2b = [16//15 * area1b[i+1] .- 1//15 * area1b[i] for i = 1:length(area1b)-1 ]
colorgoodbad( (@sprintf "%.80f" big(π)) , (@sprintf "%.80f" big(area2b[end])))
end
# ╔═╡ bc1efddd-c959-4407-9a86-ba73a64508a8
begin
area3b = [64//63 * area2b[i+1] .- 1//63 * area2b[i] for i = 1:length(area2b)-1 ]
colorgoodbad( (@sprintf "%.80f" big(π)) , (@sprintf "%.80f" big(area3b[end])))
end
# ╔═╡ 516b69d8-5d94-4b4d-9596-2db0dfbf4038
begin
area4b = [256//255 * area3b[i+1] .- 1//255 * area3b[i] for i = 1:length(area3b)-1 ]
colorgoodbad( (@sprintf "%.80f" big(π)) , (@sprintf "%.80f" big(area4b[end])))
end
# ╔═╡ cec13915-8adb-4627-b220-591377239997
begin
area5b = [1024//1023 * area4b[i+1] .- 1//1023 * area4b[i] for i = 1:length(area4b)-1 ]
colorgoodbad( (@sprintf "%.80f" big(π)) , (@sprintf "%.80f" big(area5b[end])))
end
# ╔═╡ 6d954628-6290-4867-8144-dd486551545d
begin
area6b = [4096//4095 * area5b[i+1] .- 1//4095 * area5b[i] for i = 1:length(area5b)-1 ]
colorgoodbad( (@sprintf "%.80f" big(π)) , (@sprintf "%.80f" big(area6b[end])))
end
# ╔═╡ 00478b2c-5dcc-44fc-a7be-a3dadf6300e7
begin
area7b = [16384//16383 * area6b[i+1] .- 1//16383 * area6b[i] for i = 1:length(area6b)-1 ]
colorgoodbad( (@sprintf "%.80f" big(π)) , (@sprintf "%.80f" big(area7b[end])))
end
# ╔═╡ 23d1186e-7d56-40bf-b208-c6e9a3ff120b
begin
area8b = [65536//65535 * area7b[i+1] .- 1//65535 * area7b[i] for i = 1:length(area7b)-1 ]
colorgoodbad( (@sprintf "%.80f" big(π)) , (@sprintf "%.80f" big(area8b[end])))
end
# ╔═╡ 37fc6e56-9714-11eb-1427-b75613800366
big(π)
# ╔═╡ 4a072870-961f-11eb-1215-17efa0013873
md"""
Area using inscribed squares
"""
# ╔═╡ de9066e2-d5eb-49e3-be71-edda8e8e31dd
@bind s Slider(2:40, show_value=true)
# ╔═╡ 4d4705d0-9568-11eb-085c-0fc556c4cfe7
let
plot()
for i=-s:s
plot!([i/s,i/s],[-1,1],color=RGB(0,1,0),lw=1)
plot!([-1,1],[i/s,i/s],color=RGB(0,1,0),lw=1)
end
P = plot!( cos.(θ),sin.(θ), ratio=1, axis=false, legend=false, ticks=false, lw=3, color=:black)
plot!(P)
h = 1/s
a = 0
xx= floor(√2/2h)
x = xx*h
y=x
plot!( Shape([-x, -x, x ,x],[-y, y ,y, -y]), color=RGB(1,0,0),alpha=.7)
a = a+Int(2*xx)^2
for i=-s:(-xx-1), j=-s:(-1)
x = i*h
y = j*h
if (x^2+y^2≤1) & ( (x+h)^2+(y+h)^2 ≤1) & (x^2+(y+h)^2 ≤1) & ((x+h)^2+y^2 ≤1)
plot!( Shape([x, x, x+h ,x+h],[y, y+h ,y+h, y]), color=:blue)
plot!( Shape([-x-h, -x-h, -x ,-x],[y, y+h ,y+h, y]), color=:blue)
plot!( Shape([x, x, x+h ,x+h],[-y-h, -y ,-y, -y-h]), color=:blue)
plot!( Shape([-x-h, -x-h, -x ,-x],[-y-h, -y ,-y, -y-h]), color=:blue)
plot!( Shape([y, y+h ,y+h, y],[x, x, x+h ,x+h]), color=:blue)
plot!( Shape([-y-h, -y ,-y, -y-h],[x, x, x+h ,x+h]), color=:blue)
plot!( Shape([y, y+h ,y+h, y],[-x-h, -x-h, -x ,-x]), color=:blue)
plot!( Shape([-y-h, -y ,-y, -y-h],[-x-h, -x-h, -x ,-x]), color=:blue)
a += 8
end
end
xlabel!("s = $s")
title!( "$(a//s^2) = $(a*h^2/π) π")
plot!()
end
# ╔═╡ e6884c6c-9712-11eb-288b-f1a439b0aba3
md"""
Imagine you didn't have the idea of area
"""
# ╔═╡ 4f845436-9646-11eb-2445-c12746a9e556
begin
N = 1024
h = 1/N
v = randn(N)
end
# ╔═╡ 155241b0-9646-11eb-180e-89c8651536c6
@bind j Slider(1:9, show_value=true, default=6)
# ╔═╡ 31d56008-9646-11eb-1985-2b68af354773
J = N ÷ 2^j
# ╔═╡ 1761187e-9645-11eb-3778-b132f856696d
begin
plot()
c = [0;cumsum(v)] .* √h
plot!((0:N)./N,c)
scatter!( (0:J:N)./N, c[1:J:end],legend=false,m=:o,ms=5, color=:red, lw=5)
plot!(ylims=(-2,2))
xlabel!("time")
ylabel!("position")
end
# ╔═╡ 1e18f95c-cd53-4ede-8d93-572c81f872da
md"""
A random walk is a discrete random function. It is defined at grid points. Brownian motion is a continuous random function. It is defined on an entire interval.
If one has an instance of a Brownian motion, you can say its exact value at, say, .7.
If one looks at the random variable that represents evaluation at .7 it is a normal distribution.
"""
# ╔═╡ c32e0f9c-918e-11eb-1cf9-a340786db24a
md"""
Alan's essay:
In what sense does the continuous even exist? The fact of the matter is that there are limits that give the same answer no matter how you get there, and these limits
are important to us. For example, no matter how you cover an area, by little rectangles, the sum always converges to what we intuitively call area.
The normal distribution is interesting in that no matter which starting finite distribution we might take, if add n independent copies and normalize to variance 1 we get the same limit. Again, there are so many ways to start, and yet we always end up with the same thing. Continuous mathematics is full of so many examples, where discrete objects end up behaving the same.
Indeed what happens as discrete objects get larger and larger, their complexity gets out of control if one wants to keep track of every detail, but they get simpler in their aggregate behavior.
"""
# ╔═╡ 632eea46-9710-11eb-1abe-85da8d9c30a9
f(x,t) = exp(-x^2/t)/√(π*t)
# ╔═╡ 9c519eca-9710-11eb-20dc-3f76801545d1
@bind t Slider(.01:.01:8, show_value=true)
# ╔═╡ 7c4b82c8-9710-11eb-101e-53616e278289
begin
x = -3 : .01 : 3
plot( x, f.(x,t), ylims=(0,1), legend=false)
end
# ╔═╡ 021d7e9a-9711-11eb-063b-11441afa2e69
begin
surface(-2:.05:2, .2:.01:1, f, alpha=.4, c=:Reds, legend=false)
for t = .2 : .1 :1
plot!(-2:.05:2, fill(t,length(-2:.05:2)), f.(-2:.05:2,t), c=:black)
end
xlabel!("x")
ylabel!("t")
plot!()
end
# ╔═╡ 653a1cd6-9711-11eb-2284-770f00bebeec
plotly()
# ╔═╡ bb8dc4fe-918d-11eb-2bde-bb00c47a1c27
md"""
### Sum and a (Definite) Integral
"""
# ╔═╡ c4a3bf6c-918d-11eb-1d50-911f83b6df81
md"""
### Cumsum and an Indefinite Integral
"""
# ╔═╡ d99dc494-918d-11eb-2733-29ce93ba584e
md"""
### Discrete (Finite Differencing) Filters and Derivatives/Gradients
"""
# ╔═╡ 0fb84ff2-918e-11eb-150f-8dad121c87bc
md"""
### Discrete and continuous convolutions e.g. probability densities
"""
# ╔═╡ a7c5ef96-918d-11eb-0632-f94386eb64f2
md"""
### Discrete Random Walks and Brownian Motion
"""
# ╔═╡ 75672be6-918d-11eb-1e10-07fbcc72abbd
md"""
### Binomial Distribution and the Normal Distribution
"""
# ╔═╡ 906758c6-918d-11eb-08ae-b3c4f7870b4e
md"""
### Discrete and the Continuous Fourier Transform
"""
# ╔═╡ b972b218-970c-11eb-1949-535830e20990
P = [ binomial(n,k) for n=0:5,k=0:5]
# ╔═╡ 80682786-970d-11eb-223b-b5f762b19c24
P*P'
# ╔═╡ ed6d7404-970c-11eb-13ee-5f5a454d2222
begin
A = (1 ./beta.( (1:6)', 0:5) ) ./ [1;1:5;]
A[1,:] .= 1
round.(Int,A)
end
# ╔═╡ 0e6cab25-70f8-46ab-a5ab-8542e232274e
function blue(s::String)
@htl("<span style='color: hsl(200deg, 60%, 50%);'> $(s) </span>")
end
# ╔═╡ 173b44ea-918c-11eb-116b-0bbaeffc3fe2
md"""
It is not unusual for students (and professors) to gravitate towards the discrete or the continuous. We wish to point out, that the discrete and the continuous are so closely related, that it is worthwhile to be comfortable with both. Up until fairly recently, much of computer science was often associated with discrete mathematics, while computational science and engineering was associated with physical systems, hence continuous mathematics.
$(blue("That is blurring these days:")) The popularity of machine learning has brought continuous optimization ideas such as gradient descent into the world of computer science and the impact of the physical world on us all (e.g. climate change, pandemics) is motivating applications in computer science. The newfound popularity of Data science and statistics is also mixing the discrete with the continuous.
"""
# ╔═╡ a3f005a8-9617-11eb-1503-75c31ec54f70
md"""
$(blue("Continuous math often lets you replace complicated large systems
with lots of details with a simpler abstraction that is easier to work with."))
"""
# ╔═╡ 870cdf5f-f896-4060-9548-5d9c1749d100
md"""
$(blue("The combination of continuous and discrete is often more useful than either one alone."))
"""
# ╔═╡ d9dfe7c5-9211-4707-bb33-a3ff258e10f4
md"""
$(blue("Machine Learning, Pandemics, climate change, etc. show how critical continuous math is these days."))
"""
# ╔═╡ 7edb7c63-c71e-455b-bb78-ddd50475e271
blue("asdf")
# ╔═╡ c03d45f8-9188-11eb-2e11-0fafa39f253d
function pyramid(rows::Vector{<:Vector};
horizontal=false,
padding_x=8,
padding_y=2,
)
style = (; padding = "$(padding_y)px $(padding_x)px")
render_row(xs) = @htl("""<div><padder></padder>$([@htl("<span style=$(style)>$(x)</span>") for x in xs])<padder></padder></div>""")
@htl("""
<style>
.pyramid {
flex-direction: column;
display: flex;
font-family: monospace;
font-size: 0.75rem;
}
.pyramid.horizontal {
flex-direction: row;
}
.pyramid div {
display: flex;
flex-direction: row;
}
.pyramid.horizontal div {
flex-direction: column;
}
.pyramid div>span:hover {
background: rgb(255, 220, 220);
font-weight: 900;
}
.pyramid div padder {
flex: 1 1 auto;
}
.pyramid div span {
text-align: center;
}
</style>
<div class=$(["pyramid", (horizontal ? "horizontal" : "vertical")])>
$(render_row.(rows))
</div>
""")
end
# ╔═╡ d2d1366b-9b6d-4e54-a0c4-7087f5f063c4
pyramid( [area0,area1], horizontal = true)
# ╔═╡ 6577e546-8f0b-413a-a8bb-b9c12803199d
pyramid([area0,area1,area2], horizontal = true)
# ╔═╡ 43d20d56-d56a-47a8-893e-f726c1a99651
pp(x) = colorgoodbad( string(float(π)) , (@sprintf "%.15f" x) )
# ╔═╡ 893a56b0-f5d0-4f8d-ba15-1048180a7e53
pyramid([pp.(area0), pp.(area1), pp.(area2), pp.(area3), pp.(area4)], horizontal = true)
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
GraphPlot = "a2cc645c-3eea-5389-862e-a155d0052231"
Graphs = "86223c79-3864-5bf0-83f7-82e725a168b6"
HypertextLiteral = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
[compat]
GraphPlot = "~0.6.0"
Graphs = "~1.9.0"
HypertextLiteral = "~0.9.4"
Plots = "~1.40.5"
PlutoUI = "~0.7.48"
SpecialFunctions = "~2.4.0"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.10.4"
manifest_format = "2.0"
project_hash = "e89afa85e44beaa593607e627b9c0bd38991ba46"
[[deps.AbstractPlutoDingetjes]]
deps = ["Pkg"]
git-tree-sha1 = "6e1d2a35f2f90a4bc7c2ed98079b2ba09c35b83a"
uuid = "6e696c72-6542-2067-7265-42206c756150"
version = "1.3.2"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[deps.ArnoldiMethod]]
deps = ["LinearAlgebra", "Random", "StaticArrays"]
git-tree-sha1 = "62e51b39331de8911e4a7ff6f5aaf38a5f4cc0ae"
uuid = "ec485272-7323-5ecc-a04f-4719b315124d"
version = "0.2.0"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.BitFlags]]
git-tree-sha1 = "0691e34b3bb8be9307330f88d1a3c3f25466c24d"
uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35"
version = "0.1.9"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9e2a6b69137e6969bab0152632dcb3bc108c8bdd"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+1"
[[deps.Cairo_jll]]
deps = ["Artifacts", "Bzip2_jll", "CompilerSupportLibraries_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "a2f1c8c668c8e3cb4cca4e57a8efdb09067bb3fd"
uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a"
version = "1.18.0+2"
[[deps.CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "b8fe8546d52ca154ac556809e10c75e6e7430ac8"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.5"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"]
git-tree-sha1 = "b5278586822443594ff615963b0c09755771b3e0"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.26.0"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.5"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"]
git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.10.0"
weakdeps = ["SpecialFunctions"]
[deps.ColorVectorSpace.extensions]
SpecialFunctionsExt = "SpecialFunctions"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "362a287c3aa50601b0bc359053d5c2468f0e7ce0"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.11"
[[deps.Compat]]
deps = ["TOML", "UUIDs"]
git-tree-sha1 = "b1c55339b7c6c350ee89f2c1604299660525b248"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "4.15.0"
weakdeps = ["Dates", "LinearAlgebra"]
[deps.Compat.extensions]
CompatLinearAlgebraExt = "LinearAlgebra"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "1.1.1+0"
[[deps.Compose]]
deps = ["Base64", "Colors", "DataStructures", "Dates", "IterTools", "JSON", "LinearAlgebra", "Measures", "Printf", "Random", "Requires", "Statistics", "UUIDs"]
git-tree-sha1 = "bf6570a34c850f99407b494757f5d7ad233a7257"
uuid = "a81c6b42-2e10-5240-aca2-a61377ecd94b"
version = "0.9.5"
[[deps.ConcurrentUtilities]]
deps = ["Serialization", "Sockets"]
git-tree-sha1 = "ea32b83ca4fefa1768dc84e504cc0a94fb1ab8d1"
uuid = "f0e56b4a-5159-44fe-b623-3e5288b988bb"
version = "2.4.2"
[[deps.Contour]]
git-tree-sha1 = "439e35b0b36e2e5881738abc8857bd92ad6ff9a8"
uuid = "d38c429a-6771-53c6-b99e-75d170b6e991"
version = "0.6.3"
[[deps.DataAPI]]
git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.16.0"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "1d0a14036acb104d9e89698bd408f63ab58cdc82"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.20"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
git-tree-sha1 = "9e2f36d3c96a820c678f2f1f1782582fcf685bae"
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
version = "1.9.1"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.9.3"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.EpollShim_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "8e9441ee83492030ace98f9789a654a6d0b1f643"
uuid = "2702e6a9-849d-5ed8-8c21-79e8b8f9ee43"
version = "0.0.20230411+0"
[[deps.ExceptionUnwrapping]]
deps = ["Test"]
git-tree-sha1 = "dcb08a0d93ec0b1cdc4af184b26b591e9695423a"
uuid = "460bff9d-24e4-43bc-9d9f-a8973cb893f4"
version = "0.1.10"
[[deps.Expat_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "1c6317308b9dc757616f0b5cb379db10494443a7"
uuid = "2e619515-83b5-522b-bb60-26c02a35a201"
version = "2.6.2+0"
[[deps.FFMPEG]]
deps = ["FFMPEG_jll"]
git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8"
uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a"
version = "0.4.1"
[[deps.FFMPEG_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "PCRE2_jll", "Zlib_jll", "libaom_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"]
git-tree-sha1 = "466d45dc38e15794ec7d5d63ec03d776a9aff36e"
uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5"
version = "4.4.4+1"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "05882d6995ae5c12bb5f36dd2ed3f61c98cbb172"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.5"
[[deps.Fontconfig_jll]]
deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Zlib_jll"]
git-tree-sha1 = "db16beca600632c95fc8aca29890d83788dd8b23"
uuid = "a3f928ae-7b40-5064-980b-68af3947d34b"
version = "2.13.96+0"
[[deps.Format]]
git-tree-sha1 = "9c68794ef81b08086aeb32eeaf33531668d5f5fc"
uuid = "1fa38f19-a742-5d3f-a2b9-30dd87b9d5f8"
version = "1.3.7"
[[deps.FreeType2_jll]]
deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Zlib_jll"]
git-tree-sha1 = "5c1d8ae0efc6c2e7b1fc502cbe25def8f661b7bc"
uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7"
version = "2.13.2+0"
[[deps.FriBidi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "1ed150b39aebcc805c26b93a8d0122c940f64ce2"
uuid = "559328eb-81f9-559d-9380-de523a88c83c"
version = "1.0.14+0"
[[deps.GLFW_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll", "xkbcommon_jll"]
git-tree-sha1 = "3f74912a156096bd8fdbef211eff66ab446e7297"
uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89"
version = "3.4.0+0"
[[deps.GR]]
deps = ["Artifacts", "Base64", "DelimitedFiles", "Downloads", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Preferences", "Printf", "Random", "Serialization", "Sockets", "TOML", "Tar", "Test", "p7zip_jll"]
git-tree-sha1 = "3e527447a45901ea392fe12120783ad6ec222803"
uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71"
version = "0.73.6"
[[deps.GR_jll]]
deps = ["Artifacts", "Bzip2_jll", "Cairo_jll", "FFMPEG_jll", "Fontconfig_jll", "FreeType2_jll", "GLFW_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pixman_jll", "Qt6Base_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "182c478a179b267dd7a741b6f8f4c3e0803795d6"
uuid = "d2c73de3-f751-5644-a686-071e5b155ba9"
version = "0.73.6+0"
[[deps.Gettext_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"]
git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046"
uuid = "78b55507-aeef-58d4-861c-77aaff3498b1"
version = "0.21.0+0"
[[deps.Glib_jll]]
deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE2_jll", "Zlib_jll"]
git-tree-sha1 = "7c82e6a6cd34e9d935e9aa4051b66c6ff3af59ba"
uuid = "7746bdde-850d-59dc-9ae8-88ece973131d"
version = "2.80.2+0"
[[deps.GraphPlot]]
deps = ["ArnoldiMethod", "Colors", "Compose", "DelimitedFiles", "Graphs", "LinearAlgebra", "Random", "SparseArrays"]
git-tree-sha1 = "f76a7a0f10af6ce7f227b7a921bfe351f628ed45"
uuid = "a2cc645c-3eea-5389-862e-a155d0052231"
version = "0.6.0"
[[deps.Graphite2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011"
uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472"
version = "1.3.14+0"
[[deps.Graphs]]
deps = ["ArnoldiMethod", "Compat", "DataStructures", "Distributed", "Inflate", "LinearAlgebra", "Random", "SharedArrays", "SimpleTraits", "SparseArrays", "Statistics"]
git-tree-sha1 = "899050ace26649433ef1af25bc17a815b3db52b7"
uuid = "86223c79-3864-5bf0-83f7-82e725a168b6"
version = "1.9.0"
[[deps.Grisu]]
git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2"
uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe"
version = "1.0.2"
[[deps.HTTP]]
deps = ["Base64", "CodecZlib", "ConcurrentUtilities", "Dates", "ExceptionUnwrapping", "Logging", "LoggingExtras", "MbedTLS", "NetworkOptions", "OpenSSL", "Random", "SimpleBufferStream", "Sockets", "URIs", "UUIDs"]
git-tree-sha1 = "d1d712be3164d61d1fb98e7ce9bcbc6cc06b45ed"
uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3"
version = "1.10.8"
[[deps.HarfBuzz_jll]]
deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg"]
git-tree-sha1 = "129acf094d168394e80ee1dc4bc06ec835e510a3"
uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566"
version = "2.8.1+1"
[[deps.Hyperscript]]
deps = ["Test"]
git-tree-sha1 = "179267cfa5e712760cd43dcae385d7ea90cc25a4"
uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91"
version = "0.0.5"
[[deps.HypertextLiteral]]
deps = ["Tricks"]
git-tree-sha1 = "7134810b1afce04bbc1045ca1985fbe81ce17653"
uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
version = "0.9.5"
[[deps.IOCapture]]
deps = ["Logging", "Random"]
git-tree-sha1 = "b6d6bfdd7ce25b0f9b2f6b3dd56b2673a66c8770"
uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89"
version = "0.2.5"
[[deps.Inflate]]
git-tree-sha1 = "d1b1b796e47d94588b3757fe84fbf65a5ec4a80d"
uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9"
version = "0.1.5"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.IrrationalConstants]]
git-tree-sha1 = "630b497eafcc20001bba38a4651b327dcfc491d2"
uuid = "92d709cd-6900-40b7-9082-c6be49f344b6"
version = "0.2.2"
[[deps.IterTools]]
git-tree-sha1 = "42d5f897009e7ff2cf88db414a389e5ed1bdd023"
uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e"
version = "1.10.0"
[[deps.JLFzf]]
deps = ["Pipe", "REPL", "Random", "fzf_jll"]
git-tree-sha1 = "a53ebe394b71470c7f97c2e7e170d51df21b17af"
uuid = "1019f520-868f-41f5-a6de-eb00f4b6a39c"
version = "0.1.7"
[[deps.JLLWrappers]]
deps = ["Artifacts", "Preferences"]
git-tree-sha1 = "7e5d6779a1e09a36db2a7b6cff50942a0a7d0fca"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.5.0"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.4"
[[deps.JpegTurbo_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "c84a835e1a09b289ffcd2271bf2a337bbdda6637"
uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8"
version = "3.0.3+0"
[[deps.LAME_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "170b660facf5df5de098d866564877e119141cbd"
uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d"
version = "3.100.2+0"
[[deps.LERC_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "bf36f528eec6634efc60d7ec062008f171071434"
uuid = "88015f11-f218-50d7-93a8-a6af411a945d"
version = "3.0.0+1"
[[deps.LLVMOpenMP_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "d986ce2d884d49126836ea94ed5bfb0f12679713"
uuid = "1d63c593-3942-5779-bab2-d838dc0a180e"
version = "15.0.7+0"
[[deps.LZO_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "70c5da094887fd2cae843b8db33920bac4b6f07d"
uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac"
version = "2.10.2+0"
[[deps.LaTeXStrings]]
git-tree-sha1 = "50901ebc375ed41dbf8058da26f9de442febbbec"
uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
version = "1.3.1"
[[deps.Latexify]]
deps = ["Format", "InteractiveUtils", "LaTeXStrings", "MacroTools", "Markdown", "OrderedCollections", "Requires"]
git-tree-sha1 = "5b0d630f3020b82c0775a51d05895852f8506f50"
uuid = "23fbe1c1-3f47-55db-b15f-69d7ec21a316"
version = "0.16.4"
[deps.Latexify.extensions]
DataFramesExt = "DataFrames"
SymEngineExt = "SymEngine"
[deps.Latexify.weakdeps]
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
SymEngine = "123dc426-2d89-5057-bbad-38513e3affd8"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
version = "0.6.4"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
version = "8.4.0+0"
[[deps.LibGit2]]
deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibGit2_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"]
uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5"
version = "1.6.4+0"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
version = "1.11.0+1"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.Libffi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "0b4a5d71f3e5200a7dff793393e09dfc2d874290"
uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490"
version = "3.2.2+1"