-
Notifications
You must be signed in to change notification settings - Fork 490
/
Copy pathrandom_walks_II.jl
1643 lines (1320 loc) · 55.9 KB
/
random_walks_II.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.19.45
#> [frontmatter]
#> chapter = 2
#> video = "https://www.youtube.com/watch?v=pIAFHyLmwbM"
#> image = "https://user-images.githubusercontent.com/6933510/191981723-657fd4b8-c23d-4fb9-a3f2-496b4574fac1.png"
#> section = 6
#> order = 6
#> title = "Random Walks II"
#> layout = "layout.jlhtml"
#> youtube_id = "pIAFHyLmwbM"
#> description = ""
#> tags = ["lecture", "module2", "track_julia", "track_data", "statistics", "plotting", "random", "structure", "type", "programming", "interactive"]
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ 85b45a43-d7bf-4597-a1a6-329b41dce20d
using PlutoUI, Plots, LinearAlgebra, SparseArrays
# ╔═╡ 85c26eb4-c258-4a8b-9415-7b5f7ddff02a
TableOfContents(aside=true)
# ╔═╡ 2d48bfc6-9617-11eb-3a85-279bebd21332
md"""
# Julia concepts
- Customised display of objects
- Structured matrices in Julia
- `cumsum`
- Vectors of vectors
- Concatenation of vectors: `hcat`
- `heatmap` (Plots.jl)
- `surface` (Plots.jl)
"""
# ╔═╡ 30162386-039f-4cd7-9121-a3382be3c294
md"""
# Pascal's triangle
"""
# ╔═╡ 4e7b163e-dfd0-457e-b1f3-8807a4d8060a
md"""
Let's start by thinking about Pascal's triangle. (Note that [Pascal was not the first person to study these numbers](https://en.wikipedia.org/wiki/Pascal%27s_triangle).)
"""
# ╔═╡ e8ceab7b-45db-4393-bb8e-e000ecf78d2c
pascal(N) = [binomial(n, k) for n = 0:N, k=0:N]
# ╔═╡ 2d4dffb9-39e4-48de-9688-980b96814c9f
pascal(10)
# ╔═╡ 8ff66523-bc2e-4c53-975b-8ba4f99eb1c6
md"""
The non-zero entries are the **binomial coefficients**: the $k$th entry on the $n$th row is the coefficient of $x^k$ in the expansion $(1 + x)^n$, starting from $n=0$ in the first row and $k=0$ in the first column.
"""
# ╔═╡ 2868dd57-7164-4162-8c5d-30628dedeb7a
md"""
Note that there are 0s above the main diagonal -- in other words the matrix is **lower triangular**.
Julia has special types to represent some classes of structured matrices in the standard library `LinearAlgebra` package:
"""
# ╔═╡ f6009473-d3c1-444f-88ae-814f770e811b
L = LowerTriangular(pascal(10))
# ╔═╡ 9a368602-acd3-43fb-9dff-e407a4bab930
md"""
We see that the display is special: the known "**structural**" zeros are shown as dots, instead of numbers.
"""
# ╔═╡ 67517333-175f-48c4-a915-76658cbf1304
md"""
As we have already seen, Julia also has a sparse matrix type that we could use for this, in the `SparseArrays` standard library:
"""
# ╔═╡ d6832372-d336-4a54-bbcf-d0bb70e4de64
sparse(pascal(10))
# ╔═╡ 35f14826-f1e4-4977-a31a-0f6148fe25ad
md"""
For fun, let's look at where the entries of Pascal's triangle are odd. We'll make a slider:
"""
# ╔═╡ 7468fc5d-7f35-45e2-b5fc-7e63b562bc8f
@bind n_pascal Slider(1:63, show_value=true, default=1)
# ╔═╡ 1ca8aa3b-b05d-40f6-a925-2f0248b79ca2
sparse(isodd.(pascal(n_pascal)))
# ╔═╡ 38d88b7c-3b4f-430b-8d3c-f672ab0c7a49
md"""
Note that the visual representation of a sparse matrix changes at a particular value of $n$. For larger values of $n$ the **sparsity pattern** is displayed using dots for non-zero values.
"""
# ╔═╡ f4c9b02b-738b-4de1-9e9d-05b1616bee0b
md"""
The pattern is quite striking!
"""
# ╔═╡ d1c47afa-ab7f-4543-a161-e3ceb6f11eb4
md"""
You may be interested to know that there is an alternative way to look at Pascal's triangle:
"""
# ╔═╡ bf78e00f-05d9-4a05-8512-4924ef9e25f7
[binomial(i + j, i) for i = 0:10, j = 0:10]
# ╔═╡ b948830f-ead1-4f36-a237-c998f2f7deb8
md"""
and that in fact this can be produced from the previous version using matrix multiplication!:
"""
# ╔═╡ 15223c51-8d31-4a50-a8ff-1cb7d35de454
pascal(10) * pascal(10)'
# ╔═╡ 0bd45c4a-3286-427a-a927-15869be2ebfe
md"""
## Convolutions build Pascal's triangle!
"""
# ╔═╡ 999fb608-fb1a-46cb-82ca-f3f31fe617e1
pascal(6)
# ╔═╡ 6509e69a-6e50-4816-a98f-67ba437383fb
md"""
Where do those binomial coefficients come from? That's not how we learnt to build Pascal's triangle at school!
We learned to build each number up by *summing two adjacent numbers from the previous row*. In the lower-triangular representation we we sum the number immediately above with the one to the left of it.
"""
# ╔═╡ e58976a9-1784-441e-bb76-3011538b8ad0
md"""
We can think of this as... a **convolution** with the vector $[1, 1]$ !
Recall that convolutions like this are used as **image filters**, where we want to apply the same *local* operation everywhere along a vector (i.e. one in which we modify a vector in a neighbourhood).
"""
# ╔═╡ 1efc2b68-9313-424f-9850-eb4496cc8486
md"""
# Random walks: Independent and identically-distributed random variables
"""
# ╔═╡ 6e93ffda-217b-4d46-86b5-534ddc1bae90
md"""
The discussion of Pascal's triangle and convolutions will surprisingly turn up below. For now let's go back to thinking about **random walks**.
Recall that in a random walk, at each tick of a clock we take a step in space, say left or right.
Each spatial step is random, so we can think of each step as being a **random variable** with a certain probability distribution, for example the random variable that takes the value $+1$ with probability $\frac{1}{2}$ and $-1$ also with probability $\frac{1}{2}$.
Often we will think about random walks in which each step is "the same". What do we mean by "the same"? We don't mean that the *outcome* is the same, but rather that each step has the same *probability distribution*, i.e. the same probability of taking each possible value. In other words, each step is given by *copies of the same random variable*.
Steps are also *independent* of each other (the choice of step direction right now *does not affect* the choice at the next step). Hence the steps form a collection of **independent and identically-distributed random variables**, or IID random variables.
"""
# ╔═╡ 396d2490-3cb9-4f68-8fdf-9209d2010e02
md"""
## Random walks as a cumulative sum
"""
# ╔═╡ dc1c22e8-1c7b-43b7-8421-c2ca708931a5
md"""
Let's call the random variable that describes the $i$th *step* $X_i$. Then the overall position $S_n$ of the random walk at time $n$ is given by
$$S_n = X_1 + \cdots + X_n = \sum_{i=1}^n X_i.$$
(Here we have taken the initial position $S_0$ equal to 0. If the initial position is not zero, then this instead gives the **displacement** $S_n - S_0$ at time $n$.)
Recall that by the sum of two random variables we mean a new random variable whose outcomes are sums of the outcomes, with probabilities given by taking the possible pairs of outcomes giving each new outcome.
"""
# ╔═╡ e7a52b56-322c-4478-a670-dec1013c9bd8
md"""
## Cumulative sum
"""
# ╔═╡ 5f136388-5573-4814-a088-a66278acdbbe
md"""
We previously looked at sums like this. The difference now is that we are interested in the entire **trajectory**, i.e. the sequence $S_1$, $S_2$, $\ldots$, $S_n$, $\ldots$. The trajectory is given by **partial sums**:
"""
# ╔═╡ e440dc3b-bafd-4e0c-9fe8-13fce8eea22d
md"""
$$\begin{align}
S_1 & = X_1 \\
S_2 &= X_1 + X_2 \\
S_3 &= X_1 + X_2 + X_3
\end{align}$$
etc.
"""
# ╔═╡ 89d3e90d-3685-473d-aea4-0b7c5b80d7f7
md"""
Note that $S_{n+1}$ is *not* independent of $S_n$ (or the other $S_m$). E.g. if $S_{100}$ happens to be large, then $S_{101}$ will be about as large.
Thinking about types, as we did a couple of lectures ago, we would need to define a *new* type to represent a random walk, since we cannot generate consecutive values as independent samples.
"""
# ╔═╡ 203eea14-1c68-4a9f-ab18-9a2e5f408a79
md"""
How could we calculate a trajectory of a walk? Suppose we generate steps $X_i$, e.g.
"""
# ╔═╡ b6d4b045-a39f-4236-ace2-9f631e853d1b
steps = rand( (-1, +1), 10 )
# ╔═╡ e61b56be-d334-4c8f-aa8e-887bb27c058c
md"""
The whole trajectory is given by the **cumulative sum** also called "prefix sum" or "scan". Julia has the function `cumsum` to calculate this:
"""
# ╔═╡ 782f0b9a-3793-4abb-826b-9e14d6eae690
cumsum([1, 2, 3, 4])
# ╔═╡ 1764b56a-f297-4a4e-a931-31aa987ec785
md"""
So the trajectory is given by
"""
# ╔═╡ 8082092b-b6bf-4619-8776-39fdd6c9b7c1
cumsum(steps)
# ╔═╡ 34c0b850-5e95-4eb9-8435-3aae8d124772
plot(cumsum(steps), m=:o, leg=false, size=(500, 300))
# ╔═╡ 4115f7cb-d45f-4cc2-86bf-316c074393f8
md"""
Note that in Julia this is just a convenience function; it will be no more performant than writing the `for` loop yourself (unlike in some other languages, where `for` loops are slow).
"""
# ╔═╡ 6bc2f20d-3d09-425b-a471-44090dc3161e
md"""
# Evolving probability distributions in time
"""
# ╔═╡ 98994cb9-45dc-48aa-b62d-2407f7184bee
md"""
So far we have looked at single trajectories of random walks. We can think of this as the equivalent of sampling using `rand`.
Suppose that we run many trajectories of a random walk. At a given time $t$ we can ask where all of the walks are by taking a histogram of the $S_t^{(k)}$, where the superscript $^{(k)}$ denotes the $k$th trajectory out of the collection.
Doing so gives us the *probability distribution* of the random variable $S_t$.
Let's call $p_i^t := \mathbb{P}(S_t = i)$ the probability of being at site $i$ at time $t$. Then the probability distribution at time $t$ is given by the collection of all the $p_i^t$; we can group these into a vector $\mathbf{p}^t$.
Now we can ask what happens at the *next* time step $t+1$. Taking histograms again gives the probabilities $p_j^{t+1}$ and the vector $\mathbf{p}^t$ of all of them.
But $\mathbf{p}^{t+1}$ and $\mathbf{p}^{t}$ are related in some way, since we go from $S_t$ to $S_{t+1}$ by just taking a single step.
Let's think about the case of a simple random walk in one dimension. To arrive at site $i$ at time $t+1$, we must have been in one of the *neighbouring* sites at time $t$ and jumped with probability $\frac{1}{2}$ in the direction of site $i$. Hence we have
$$p_i^{t+1} = \textstyle \frac{1}{2} (p_{i-1}^{t} + p_{i+1}^{t}).$$
This is sometimes called the **master equation** (even though that is rather a useless, non-descriptive name); it describes how the *probability distribution of the random walk evolves in time*.
"""
# ╔═╡ f11f8d7d-cd3f-4585-aab4-083b892c6d4c
md"""
## Implementing time evolution of probabilities
Let's write a function to **evolve** a probability vector to the next time step for a simple random walk:
"""
# ╔═╡ fb804fe2-58be-46c9-9200-ceb8863d052c
function evolve(p)
p′ = similar(p) # make a vector of the same length and type
# to store the probability vector at the next time step
for i in 2:length(p)-1 # iterate over the *bulk* of the system
p′[i] = 0.5 * (p[i-1] + p[i+1])
end
# boundary conditions:
p′[1] = 0
p′[end] = 0
return p′
end
# ╔═╡ 40e457b4-616c-4fab-9c8e-2e5063129597
md"""
Wait... Do you recognise this?
This is just a **convolution** again! The kernel is now $[\frac{1}{2}, 0, \frac{1}{2}]$. Apart from the extra $0$ and the $\frac{1}{2}$, this is the *same* as in Pascal's triangle... so probabilities in simple random walk behave like Pascal's triangle!
"""
# ╔═╡ 979c1fbd-c9f6-4e8b-a648-6a0210fc9e7f
md"""
Note that just as with images we have a problem at the edges of the system: We need to specify **boundary conditions** on the first and last cells. For now we have put 0s at the boundary, corresponding to probability *escaping* at the boundary: any probability that arrives at the boundary at a given time step does not stay in the system. We can think of the probability as analogous to a chemical moving through a system that leaves our system (and e.g. moves into the outside world) when it reaches an edge.
"""
# ╔═╡ 583e3a92-01e7-4b88-9be0-f1e3b3c95005
md"""
We also need to specify an *initial* condition $\mathbf{p}_0$. This tells us where our walker is at time $0$. Suppose that all walkers start at site $i=0$. We will place this in the middle of our vector. Then the *probability* of being at $0$ is 1 (certainty), while the probability at any other site is 0 (impossible):
"""
# ╔═╡ 0b26efab-4e93-4d53-9c4d-faea68d12174
function initial_condition(n)
p₀ = zeros(n)
p₀[n ÷ 2 + 1] = 1
return p₀
end
# ╔═╡ b9ce5af1-84f7-4a2d-92c9-de2c5498a88d
md"""
Now let's evolve the probability vector in time by applying the `evolve` function repeatedly, starting from the initial probability distribution:
"""
# ╔═╡ b48e55b7-4b56-41aa-9796-674d04adf5df
function time_evolution(p0, N)
ps = [p0]
p = p0
for i in 1:N
p = evolve(p)
push!(ps, copy(p))
end
return ps
end
# ╔═╡ 53a36c1a-0b8c-4099-8854-08d73c9f118e
md"""
Let's visualise this:
"""
# ╔═╡ 6b298184-32c6-412d-a900-b113d6bd3d53
begin
grid_size = 101
p0 = initial_condition(grid_size)
end
# ╔═╡ b84a7255-7b0a-4ba1-8c87-9f5d3fa32ef3
ps = time_evolution(p0, 100)
# ╔═╡ c430c4de-d9bf-44e1-aa40-6b823d718b04
md"""
Note that `ps` is a `Vector`, whose elements are each `Vector`s! I.e. we have a vector of vectors. This is often a convenient way to *build up* a matrix.
"""
# ╔═╡ 99717c6e-f713-49d5-8ee5-a08c4a464223
ps[2]
# ╔═╡ 242ea831-c421-4a76-b658-2a57fa924a4f
md"""
t = $(@bind tt Slider(1:length(ps), show_value=true, default=1))
"""
# ╔═╡ aeaef573-1e90-45f3-a7fe-31ec5e2808c4
bar(ps[tt], ylim=(0, 1), leg=false, size=(500, 300), alpha=0.5)
# ╔═╡ efe186da-3273-4767-aafc-fc8eae01dbd9
md"""
### Concatenating vectors into a matrix
"""
# ╔═╡ 61201091-b8b3-4776-9be9-4c23d5ba88ba
md"""
Now we want to visualise this in a different way, for which we must join up (**concatenate**) all the probability vectors into a matrix:
"""
# ╔═╡ 66c4aed3-a04b-4a09-b954-79e816d2a3f7
M = reduce(hcat, ps)'
# ╔═╡ b135f6be-5e82-4c72-af11-0eb0d4141dec
md"""
We can visualise the matrix with a **heat map**:
"""
# ╔═╡ e74e18e3-ad08-4a53-a803-cd53564dca65
heatmap(M, yflip=true)
# ╔═╡ ed02f00f-1bcd-43fa-a56c-7be9968614cc
md"""
We can also visualise this as a 3D surface:
"""
# ╔═╡ 8d453f89-4a4a-42d0-8a00-9b153a3f435e
plotly()
# ╔═╡ f7de29b5-2a51-45e4-a0a5-f7f602681303
surface(M)
# ╔═╡ 7e817bad-dc51-4c29-a4fc-f7a8bb3663ca
md"""
But this is not necessarily very clear, so let's draw it ourselves as stacked histograms:
"""
# ╔═╡ 403d607b-6171-431b-a058-0aad0909846f
gr()
# ╔═╡ 80e033c4-a862-443d-a198-932f5822a44e
ylabels = [-(grid_size÷2):grid_size÷2;]
# ╔═╡ c8c16c14-26b0-4f83-8135-4f862ed90686
begin
plot(leg=false)
for which in 1:15
for i in 1:length(ps[which])
plot!([which, which], [-grid_size÷2 + i, -grid_size÷2 + i], [0, ps[which][i] ], c=which, alpha=0.8, lw = 2)
end
end
xlims!(1, 15)
plot!()
end
# ╔═╡ 29612df6-203f-42bc-b53b-86af618d60ec
let
color_list = [:red, RGB(0, 1, 0.1), :blue]
xs = []
ys = []
zs = []
cs = []
cs2 = []
for which in 1:15
for i in 1:length(ps[which])
push!(xs, which, which, NaN)
push!(ys, ylabels[i], ylabels[i], NaN)
push!(zs, 0, ps[which][i], NaN)
# push!(zs, 0, 1, NaN)D
push!(cs, color_list[mod1(which, 3)], color_list[mod1(which, 3)], color_list[mod1(which, 3)])
end
push!(cs2, which)
end
# plot(xs, ys, zs)
plot(leg=false)
plot!(1:15, [0; cumsum(sign.(randn(14)))], zeros(15), alpha=0.6, m=:o, lw=2, c=color_list)
plot!(xs, ys, zs, c=cs, xlims=(1, 15), ylims=(-30, 30), zlims=(0, 1), lw=2.5, alpha=0.7, xticks=(1:15), yticks=(-20:10:20))
xlabel!("t")
ylabel!("space")
end
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[compat]
Plots = "~1.40.5"
PlutoUI = "~0.7.48"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.10.4"
manifest_format = "2.0"
project_hash = "a47e18c34496006494947a8b20f0fec59bb8e478"
[[deps.AbstractPlutoDingetjes]]
deps = ["Pkg"]
git-tree-sha1 = "6e1d2a35f2f90a4bc7c2ed98079b2ba09c35b83a"
uuid = "6e696c72-6542-2067-7265-42206c756150"
version = "1.3.2"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.BitFlags]]
git-tree-sha1 = "0691e34b3bb8be9307330f88d1a3c3f25466c24d"
uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35"
version = "0.1.9"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9e2a6b69137e6969bab0152632dcb3bc108c8bdd"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+1"
[[deps.Cairo_jll]]
deps = ["Artifacts", "Bzip2_jll", "CompilerSupportLibraries_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "a2f1c8c668c8e3cb4cca4e57a8efdb09067bb3fd"
uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a"
version = "1.18.0+2"
[[deps.CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "b8fe8546d52ca154ac556809e10c75e6e7430ac8"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.5"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"]
git-tree-sha1 = "b5278586822443594ff615963b0c09755771b3e0"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.26.0"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.5"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"]
git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.10.0"
[deps.ColorVectorSpace.extensions]
SpecialFunctionsExt = "SpecialFunctions"
[deps.ColorVectorSpace.weakdeps]
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "362a287c3aa50601b0bc359053d5c2468f0e7ce0"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.11"
[[deps.Compat]]
deps = ["TOML", "UUIDs"]
git-tree-sha1 = "b1c55339b7c6c350ee89f2c1604299660525b248"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "4.15.0"
weakdeps = ["Dates", "LinearAlgebra"]
[deps.Compat.extensions]
CompatLinearAlgebraExt = "LinearAlgebra"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "1.1.1+0"
[[deps.ConcurrentUtilities]]
deps = ["Serialization", "Sockets"]
git-tree-sha1 = "ea32b83ca4fefa1768dc84e504cc0a94fb1ab8d1"
uuid = "f0e56b4a-5159-44fe-b623-3e5288b988bb"
version = "2.4.2"
[[deps.Contour]]
git-tree-sha1 = "439e35b0b36e2e5881738abc8857bd92ad6ff9a8"
uuid = "d38c429a-6771-53c6-b99e-75d170b6e991"
version = "0.6.3"
[[deps.DataAPI]]
git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.16.0"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "1d0a14036acb104d9e89698bd408f63ab58cdc82"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.20"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
git-tree-sha1 = "9e2f36d3c96a820c678f2f1f1782582fcf685bae"
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
version = "1.9.1"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.9.3"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.EpollShim_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "8e9441ee83492030ace98f9789a654a6d0b1f643"
uuid = "2702e6a9-849d-5ed8-8c21-79e8b8f9ee43"
version = "0.0.20230411+0"
[[deps.ExceptionUnwrapping]]
deps = ["Test"]
git-tree-sha1 = "dcb08a0d93ec0b1cdc4af184b26b591e9695423a"
uuid = "460bff9d-24e4-43bc-9d9f-a8973cb893f4"
version = "0.1.10"
[[deps.Expat_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "1c6317308b9dc757616f0b5cb379db10494443a7"
uuid = "2e619515-83b5-522b-bb60-26c02a35a201"
version = "2.6.2+0"
[[deps.FFMPEG]]
deps = ["FFMPEG_jll"]
git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8"
uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a"
version = "0.4.1"
[[deps.FFMPEG_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "PCRE2_jll", "Zlib_jll", "libaom_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"]
git-tree-sha1 = "466d45dc38e15794ec7d5d63ec03d776a9aff36e"
uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5"
version = "4.4.4+1"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "05882d6995ae5c12bb5f36dd2ed3f61c98cbb172"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.5"
[[deps.Fontconfig_jll]]
deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Zlib_jll"]
git-tree-sha1 = "db16beca600632c95fc8aca29890d83788dd8b23"
uuid = "a3f928ae-7b40-5064-980b-68af3947d34b"
version = "2.13.96+0"
[[deps.Format]]
git-tree-sha1 = "9c68794ef81b08086aeb32eeaf33531668d5f5fc"
uuid = "1fa38f19-a742-5d3f-a2b9-30dd87b9d5f8"
version = "1.3.7"
[[deps.FreeType2_jll]]
deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Zlib_jll"]
git-tree-sha1 = "5c1d8ae0efc6c2e7b1fc502cbe25def8f661b7bc"
uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7"
version = "2.13.2+0"
[[deps.FriBidi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "1ed150b39aebcc805c26b93a8d0122c940f64ce2"
uuid = "559328eb-81f9-559d-9380-de523a88c83c"
version = "1.0.14+0"
[[deps.GLFW_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll", "xkbcommon_jll"]
git-tree-sha1 = "3f74912a156096bd8fdbef211eff66ab446e7297"
uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89"
version = "3.4.0+0"
[[deps.GR]]
deps = ["Artifacts", "Base64", "DelimitedFiles", "Downloads", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Preferences", "Printf", "Random", "Serialization", "Sockets", "TOML", "Tar", "Test", "p7zip_jll"]
git-tree-sha1 = "3e527447a45901ea392fe12120783ad6ec222803"
uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71"
version = "0.73.6"
[[deps.GR_jll]]
deps = ["Artifacts", "Bzip2_jll", "Cairo_jll", "FFMPEG_jll", "Fontconfig_jll", "FreeType2_jll", "GLFW_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pixman_jll", "Qt6Base_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "182c478a179b267dd7a741b6f8f4c3e0803795d6"
uuid = "d2c73de3-f751-5644-a686-071e5b155ba9"
version = "0.73.6+0"
[[deps.Gettext_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"]
git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046"
uuid = "78b55507-aeef-58d4-861c-77aaff3498b1"
version = "0.21.0+0"
[[deps.Glib_jll]]
deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE2_jll", "Zlib_jll"]
git-tree-sha1 = "7c82e6a6cd34e9d935e9aa4051b66c6ff3af59ba"
uuid = "7746bdde-850d-59dc-9ae8-88ece973131d"
version = "2.80.2+0"
[[deps.Graphite2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011"
uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472"
version = "1.3.14+0"
[[deps.Grisu]]
git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2"
uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe"
version = "1.0.2"
[[deps.HTTP]]
deps = ["Base64", "CodecZlib", "ConcurrentUtilities", "Dates", "ExceptionUnwrapping", "Logging", "LoggingExtras", "MbedTLS", "NetworkOptions", "OpenSSL", "Random", "SimpleBufferStream", "Sockets", "URIs", "UUIDs"]
git-tree-sha1 = "d1d712be3164d61d1fb98e7ce9bcbc6cc06b45ed"
uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3"
version = "1.10.8"
[[deps.HarfBuzz_jll]]
deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg"]
git-tree-sha1 = "129acf094d168394e80ee1dc4bc06ec835e510a3"
uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566"
version = "2.8.1+1"
[[deps.Hyperscript]]
deps = ["Test"]
git-tree-sha1 = "179267cfa5e712760cd43dcae385d7ea90cc25a4"
uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91"
version = "0.0.5"
[[deps.HypertextLiteral]]
deps = ["Tricks"]
git-tree-sha1 = "7134810b1afce04bbc1045ca1985fbe81ce17653"
uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
version = "0.9.5"
[[deps.IOCapture]]
deps = ["Logging", "Random"]
git-tree-sha1 = "b6d6bfdd7ce25b0f9b2f6b3dd56b2673a66c8770"
uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89"
version = "0.2.5"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.IrrationalConstants]]
git-tree-sha1 = "630b497eafcc20001bba38a4651b327dcfc491d2"
uuid = "92d709cd-6900-40b7-9082-c6be49f344b6"
version = "0.2.2"
[[deps.JLFzf]]
deps = ["Pipe", "REPL", "Random", "fzf_jll"]
git-tree-sha1 = "a53ebe394b71470c7f97c2e7e170d51df21b17af"
uuid = "1019f520-868f-41f5-a6de-eb00f4b6a39c"
version = "0.1.7"
[[deps.JLLWrappers]]
deps = ["Artifacts", "Preferences"]
git-tree-sha1 = "7e5d6779a1e09a36db2a7b6cff50942a0a7d0fca"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.5.0"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.4"
[[deps.JpegTurbo_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "c84a835e1a09b289ffcd2271bf2a337bbdda6637"
uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8"
version = "3.0.3+0"
[[deps.LAME_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "170b660facf5df5de098d866564877e119141cbd"
uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d"
version = "3.100.2+0"
[[deps.LERC_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "bf36f528eec6634efc60d7ec062008f171071434"
uuid = "88015f11-f218-50d7-93a8-a6af411a945d"
version = "3.0.0+1"
[[deps.LLVMOpenMP_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "d986ce2d884d49126836ea94ed5bfb0f12679713"
uuid = "1d63c593-3942-5779-bab2-d838dc0a180e"
version = "15.0.7+0"
[[deps.LZO_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "70c5da094887fd2cae843b8db33920bac4b6f07d"
uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac"
version = "2.10.2+0"
[[deps.LaTeXStrings]]
git-tree-sha1 = "50901ebc375ed41dbf8058da26f9de442febbbec"
uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
version = "1.3.1"
[[deps.Latexify]]
deps = ["Format", "InteractiveUtils", "LaTeXStrings", "MacroTools", "Markdown", "OrderedCollections", "Requires"]
git-tree-sha1 = "5b0d630f3020b82c0775a51d05895852f8506f50"
uuid = "23fbe1c1-3f47-55db-b15f-69d7ec21a316"
version = "0.16.4"
[deps.Latexify.extensions]
DataFramesExt = "DataFrames"
SymEngineExt = "SymEngine"
[deps.Latexify.weakdeps]
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
SymEngine = "123dc426-2d89-5057-bbad-38513e3affd8"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
version = "0.6.4"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
version = "8.4.0+0"
[[deps.LibGit2]]
deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibGit2_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"]
uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5"
version = "1.6.4+0"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
version = "1.11.0+1"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.Libffi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "0b4a5d71f3e5200a7dff793393e09dfc2d874290"
uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490"
version = "3.2.2+1"
[[deps.Libgcrypt_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll"]
git-tree-sha1 = "9fd170c4bbfd8b935fdc5f8b7aa33532c991a673"
uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4"
version = "1.8.11+0"
[[deps.Libglvnd_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll", "Xorg_libXext_jll"]
git-tree-sha1 = "6f73d1dd803986947b2c750138528a999a6c7733"
uuid = "7e76a0d4-f3c7-5321-8279-8d96eeed0f29"
version = "1.6.0+0"
[[deps.Libgpg_error_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "fbb1f2bef882392312feb1ede3615ddc1e9b99ed"
uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8"
version = "1.49.0+0"
[[deps.Libiconv_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "f9557a255370125b405568f9767d6d195822a175"
uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531"
version = "1.17.0+0"
[[deps.Libmount_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "0c4f9c4f1a50d8f35048fa0532dabbadf702f81e"
uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9"
version = "2.40.1+0"
[[deps.Libtiff_jll]]
deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "LERC_jll", "Libdl", "XZ_jll", "Zlib_jll", "Zstd_jll"]
git-tree-sha1 = "2da088d113af58221c52828a80378e16be7d037a"
uuid = "89763e89-9b03-5906-acba-b20f662cd828"
version = "4.5.1+1"
[[deps.Libuuid_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "5ee6203157c120d79034c748a2acba45b82b8807"
uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700"
version = "2.40.1+0"
[[deps.LinearAlgebra]]
deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.LogExpFunctions]]
deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"]
git-tree-sha1 = "a2d09619db4e765091ee5c6ffe8872849de0feea"
uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
version = "0.3.28"
[deps.LogExpFunctions.extensions]
LogExpFunctionsChainRulesCoreExt = "ChainRulesCore"
LogExpFunctionsChangesOfVariablesExt = "ChangesOfVariables"
LogExpFunctionsInverseFunctionsExt = "InverseFunctions"
[deps.LogExpFunctions.weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
ChangesOfVariables = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0"
InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.LoggingExtras]]
deps = ["Dates", "Logging"]
git-tree-sha1 = "c1dd6d7978c12545b4179fb6153b9250c96b0075"
uuid = "e6f89c97-d47a-5376-807f-9c37f3926c36"
version = "1.0.3"
[[deps.MIMEs]]
git-tree-sha1 = "65f28ad4b594aebe22157d6fac869786a255b7eb"
uuid = "6c6e2e6c-3030-632d-7369-2d6c69616d65"
version = "0.1.4"
[[deps.MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "2fa9ee3e63fd3a4f7a9a4f4744a52f4856de82df"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.13"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS]]
deps = ["Dates", "MbedTLS_jll", "MozillaCACerts_jll", "NetworkOptions", "Random", "Sockets"]
git-tree-sha1 = "c067a280ddc25f196b5e7df3877c6b226d390aaf"
uuid = "739be429-bea8-5141-9913-cc70e7f3736d"
version = "1.1.9"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
version = "2.28.2+1"
[[deps.Measures]]
git-tree-sha1 = "c13304c81eec1ed3af7fc20e75fb6b26092a1102"
uuid = "442fdcdd-2543-5da2-b0f3-8c86c306513e"
version = "0.3.2"
[[deps.Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "ec4f7fbeab05d7747bdf98eb74d130a2a2ed298d"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "1.2.0"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
version = "2023.1.10"
[[deps.NaNMath]]
deps = ["OpenLibm_jll"]
git-tree-sha1 = "0877504529a3e5c3343c6f8b4c0381e57e4387e4"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "1.0.2"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
version = "1.2.0"
[[deps.Ogg_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "887579a3eb005446d514ab7aeac5d1d027658b8f"
uuid = "e7412a2a-1a6e-54c0-be00-318e2571c051"
version = "1.3.5+1"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
version = "0.3.23+4"
[[deps.OpenLibm_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "05823500-19ac-5b8b-9628-191a04bc5112"
version = "0.8.1+2"
[[deps.OpenSSL]]
deps = ["BitFlags", "Dates", "MozillaCACerts_jll", "OpenSSL_jll", "Sockets"]
git-tree-sha1 = "38cb508d080d21dc1128f7fb04f20387ed4c0af4"
uuid = "4d8831e6-92b7-49fb-bdf8-b643e874388c"
version = "1.4.3"
[[deps.OpenSSL_jll]]