-
Notifications
You must be signed in to change notification settings - Fork 5.8k
/
Copy pathface_detect_dnn.jl
39 lines (34 loc) · 1.44 KB
/
face_detect_dnn.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
using OpenCV
const cv = OpenCV
size0 = Int32(300)
# take the model from https://github.com/opencv/opencv_extra/tree/master/testdata/dnn
net = cv.dnn_DetectionModel("opencv_face_detector.pbtxt", "opencv_face_detector_uint8.pb")
cv.dnn.setPreferableTarget(net, cv.dnn.DNN_TARGET_CPU)
cv.dnn.setInputMean(net, (104, 177, 123))
cv.dnn.setInputScale(net, 1.)
cv.dnn.setInputSize(net, size0, size0)
cap = cv.VideoCapture(Int32(0))
while true
ok, frame = cv.read(cap)
if ok == false
break
end
classIds, confidences, boxes = cv.dnn.detect(net, frame, confThreshold=Float32(0.5))
for i in 1:size(boxes,1)
confidence = confidences[i]
x0 = Int32(boxes[i].x)
y0 = Int32(boxes[i].y)
x1 = Int32(boxes[i].x+boxes[i].width)
y1 = Int32(boxes[i].y+boxes[i].height)
cv.rectangle(frame, cv.Point{Int32}(x0, y0), cv.Point{Int32}(x1, y1), (100, 255, 100); thickness = Int32(5))
label = "face: " * string(confidence)
lsize, bl = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, Int32(1))
cv.rectangle(frame, cv.Point{Int32}(x0,y0), cv.Point{Int32}(x0+lsize.width, y0+lsize.height+bl), (100,255,100); thickness = Int32(-1))
cv.putText(frame, label, cv.Point{Int32}(x0, y0 + lsize.height),
cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0); thickness = Int32(1), lineType = cv.LINE_AA)
end
cv.imshow("detections", frame)
if cv.waitKey(Int32(30)) >= 0
break
end
end